High-performance land surface modeling with a Linux cluster

被引:19
作者
Tian, Y. [1 ,2 ]
Peters-Lidard, C. D. [1 ]
Kumar, S. V. [2 ]
Geiger, J. [3 ]
Houser, P. R. [4 ,5 ]
Eastman, J. L. [2 ]
Dirmeyer, P. [6 ]
Doty, B. [6 ]
Adams, J. [6 ]
机构
[1] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA
[2] Univ Maryland Baltimore Cty, Goddard Earth Sci Technol Ctr, Baltimore, MD 21250 USA
[3] NASA, Goddard Space Flight Ctr, Informat Syst Div, Greenbelt, MD 20771 USA
[4] George Mason Univ, Climate Dynam Program, Calverton, MD 20705 USA
[5] George Mason Univ, Ctr Res Environm & Water, Calverton, MD 20705 USA
[6] Ctr Ocean Land Atmosphere Studies, Calverton, MD 20705 USA
关键词
Hydrology modeling; Beowulf cluster; Distributed computing; Parallel computing; Peer-to-peer network; High-resolution simulation;
D O I
10.1016/j.cageo.2007.12.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Land Information System (LIS) was developed at NASA to perform global land surface simulations at a resolution of l-km or finer in real time. Such unprecedented scales and intensity pose many computational challenges. In this article, we demonstrate some of our approaches in high-performance computing with a Linux cluster to meet these challenges and reach our performance goals. These approaches include job partition and a job management system for parallel processing on the cluster, high-performance parallel input/output based on GrADS-DODS (GDS) servers, dynamic load-balancing and distributed data storage techniques, and highly scalable data replication with peer-to-peer (P2P) technology. These techniques work coherently to provide a high-performance land surface modeling system featuring fault tolerance, optimal resource utilization, and high scalability. Examples are given with LIS's high-resolution modeling of surface runoff during 2003 to illustrate LIS's capability to enable new scientific explorations. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1492 / 1504
页数:13
相关论文
共 17 条
[1]  
[Anonymous], 2001, Rainfall-runoff Modelling, The Primer
[2]  
[Anonymous], 2003, PROC 19 ACM S OPERAT
[3]  
[Anonymous], 1999, BUILD BEOWULF GUIDE
[4]  
Carns PH, 2000, USENIX ASSOCIATION PROCEEDINGS OF THE 4TH ANNUAL LINUX SHOWCASE AND CONFERENCE, ATLANTA, P317
[5]   The Common Land Model [J].
Dai, YJ ;
Zeng, XB ;
Dickinson, RE ;
Baker, I ;
Bonan, GB ;
Bosilovich, MG ;
Denning, AS ;
Dirmeyer, PA ;
Houser, PR ;
Niu, GY ;
Oleson, KW ;
Schlosser, CA ;
Yang, ZL .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2003, 84 (08) :1013-1023
[6]  
Doty BE, 1995, GEOPHYSICAL DATA ANA, P209
[7]   Global consequences of land use [J].
Foley, JA ;
DeFries, R ;
Asner, GP ;
Barford, C ;
Bonan, G ;
Carpenter, SR ;
Chapin, FS ;
Coe, MT ;
Daily, GC ;
Gibbs, HK ;
Helkowski, JH ;
Holloway, T ;
Howard, EA ;
Kucharik, CJ ;
Monfreda, C ;
Patz, JA ;
Prentice, IC ;
Ramankutty, N ;
Snyder, PK .
SCIENCE, 2005, 309 (5734) :570-574
[8]  
Gropp W., 1999, USING MPI PORTABLE P
[9]   The architecture of the earth system modeling framework [J].
Hill, C ;
DeLuca, C ;
Balaji ;
Suarez, M ;
da Silva, A .
COMPUTING IN SCIENCE & ENGINEERING, 2004, 6 (01) :18-28
[10]  
HOFSTEE P, 1991, RES DIRECTIONS HIGH, P338