Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays

被引:677
作者
Zhao, Weian [1 ]
Brook, Michael A. [1 ]
Li, Yingfu [1 ,2 ]
机构
[1] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada
[2] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON L8N 3Z5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
biosensors; colloids; gold; nanotechnology; surface plasmon resonance;
D O I
10.1002/cbic.200800282
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gold nanoparticle (AuNP)-based colorimetric biosensing assays have recently attracted considerable attention in diagnostic applications due to their simplicity and versatility. This Minireview summarizes recent advances in this field and attempts to provide general guidance on how to design such assays. The key to the AuNP-based colorimetric sensing platform is the control of colloidal AuNP dispersion and aggregation stages by using biological processes (or analytes) of interest. The ability to balance interparticle attractive and repulsive forces, which determine whether AuNPs ore stabilized or aggregated and, consequently, the color of the solution, is central in the design of such systems. AuNP aggregation in these assays can be induced by an "interparticle-crosslinking" mechanism in which the enthalpic benefits of inter-particle bonding formation overcome interparticle repulsive forces. Alternatively, AuNP aggregation can be guided by the controlled loss of colloidal stability in a "noncrosslinking-aggregation" mechanism. In this case, as a consequence of changes in surface properties, the van der Wools attractive forces overcome interparticle repulsive forces. Using representative examples we illustrate the general strategies that are commonly used to control AuNP aggregation and dispersion in AuNP-based colorimetric assays. Understanding the factors that play important roles in such systems will not only provide guidance in designing AuNP-based calorimetric assays, but also facilitate research that exploits these principles in such areas as nanoassembly, biosciences and colloid and polymer sciences.
引用
收藏
页码:2363 / 2371
页数:9
相关论文
共 141 条
[41]   Rapid, quantitative colorimetric detection of a lectin using mannose-stabilized gold nanoparticles [J].
Hone, DC ;
Haines, AH ;
Russell, DA .
LANGMUIR, 2003, 19 (17) :7141-7144
[42]   Gold nanostructures: engineering their plasmonic properties for biomedical applications [J].
Hu, Min ;
Chen, Jingyi ;
Li, Zhi-Yuan ;
Au, Leslie ;
Hartland, Gregory V. ;
Li, Xingde ;
Marquez, Manuel ;
Xia, Younan .
CHEMICAL SOCIETY REVIEWS, 2006, 35 (11) :1084-1094
[43]   Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors [J].
Huang, CC ;
Huang, YF ;
Cao, ZH ;
Tan, WH ;
Chang, HT .
ANALYTICAL CHEMISTRY, 2005, 77 (17) :5735-5741
[44]   Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry [J].
Huang, Yu-Fen ;
Chang, Huan-Tsung .
ANALYTICAL CHEMISTRY, 2007, 79 (13) :4852-4859
[45]  
Hunter R. J., 2004, FDN COLLOID SCI
[46]   Screening the sequence selectivity of DNA-Binding molecules using a gold nanoparticle based colorimetric approach [J].
Hurst, Sarah J. ;
Han, Min Su ;
Lytton-Jean, Abigail K. R. ;
Mirkin, Chad A. .
ANALYTICAL CHEMISTRY, 2007, 79 (18) :7201-7205
[47]   Exploitation of localized surface plasmon resonance [J].
Hutter, E ;
Fendler, JH .
ADVANCED MATERIALS, 2004, 16 (19) :1685-1706
[48]   Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications [J].
Katz, E ;
Willner, I .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (45) :6042-6108
[49]  
Katz E., 2004, ANGEW CHEM, V116, P6166
[50]   Gold nanoparticle-based sensing of "spectroscopically silent" heavy metal ions [J].
Kim, YJ ;
Johnson, RC ;
Hupp, JT .
NANO LETTERS, 2001, 1 (04) :165-167