1 Nociceptin, also known as orphanin FQ, is an endogenous ligand for the orphan opioid receptor-like receptor 1 (ORL1) and involves in various functions in the central nervous system (CNS). On the other hand, nocistatin is recently isolated from the same precursor as nociceptin and blocks nociceptin-induced allodynia and hyperalgesia. 2 Although ORL1 receptors which display a high degree of sequence homology with classical opioid receptors are abundant in the hippocampus, little is known regarding their role in learning and memory. 3 The present study was designed to investigate whether nociceptin/orphanin FQ and nocistatin could modulate impairment of learning and memory induced by scopolamine, a muscarinic cholinergic receptor antagonist, using spontaneous alternation of Y-maze and step-down type passive avoidance tasks in mice. 4 While nocistatin (0.5-5.0 nmol mouse(-1), i.c.v.) administered 30 min before spontaneous alternation performance or the training session of the passive avoidance task, had no effect on spontaneous alternation or passive avoidance behaviours, a lower per cent alternation and shorter median step-down latency in the retention test were obtained in nociceptin (1.5 and/or 5.0 nmol mouse(-1), i.c.v.)-treated normal mice. 5 Administration of nocistatin (1.5 and/or 5.0 nmol mouse(-1), i.c.v.) 30 min before spontaneous alternation performance or the training session of the passive avoidance task, attenuated the scopolamine-induced impairment of spontaneous alternation and passive avoidance behaviours. 6 These results indicated that nocistatin, a new biologically active peptide, ameliorates impairments of spontaneous alternation and passive avoidance induced by scopolamine, and suggested that these peptides play opposite roles in learning and memory.