A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart

被引:391
作者
Kalsotra, Auinash [1 ]
Xiao, Xinshu [5 ]
Ward, Amanda J. [1 ,2 ]
Castle, John C. [4 ]
Johnson, Jason M. [4 ]
Burge, Christopher B. [5 ]
Cooper, Thomas A. [1 ,2 ,3 ]
机构
[1] Baylor Coll Med, Dept Pathol, Houston, TX 77030 USA
[2] Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Dev Biol, Houston, TX 77030 USA
[4] Merck & Co Inc, Rosetta Inpharmat LLC, Seattle, WA 98109 USA
[5] MIT, Dept Biol, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
CUGBP and ETR-3-like factors; heart development; muscleblind-like; splicing microarray;
D O I
10.1073/pnas.0809045105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
From a large-scale screen using splicing microarrays and RT-PCR, we identified 63 alternative splicing (AS) events that are coordinated in 3 distinct temporal patterns during mouse heart development. More than half of these splicing transitions are evolutionarily conserved between mouse and chicken. Computational analysis of the introns flanking these splicing events identified enriched and conserved motifs including binding sites for CUGBP and ETR-3-like factors (CELF), muscleblind-like (MBNL) and Fox proteins. We show that CELF proteins are down-regulated > 10-fold during heart development, and MBNL1 protein is concomitantly up-regulated nearly 4-fold. Using transgenic and knockout mice, we show that reproducing the embryonic expression patterns for CUGBP1 and MBNL1 in adult heart induces the embryonic splicing patterns for more than half of the developmentally regulated AS transitions. These findings indicate that CELF and MBNL proteins are determinative for a large subset of splicing transitions that occur during postnatal heart development.
引用
收藏
页码:20333 / 20338
页数:6
相关论文
共 34 条
[1]   Ultraconserved elements in the human genome [J].
Bejerano, G ;
Pheasant, M ;
Makunin, I ;
Stephen, S ;
Kent, WJ ;
Mattick, JS ;
Haussler, D .
SCIENCE, 2004, 304 (5675) :1321-1325
[2]   Alternative splicing: New insights from global analyses [J].
Blencowe, Benjamin J. .
CELL, 2006, 126 (01) :37-47
[3]   MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development [J].
Boutz, Paul L. ;
Chawla, Geetanjali ;
Stoilov, Peter ;
Black, Douglas L. .
GENES & DEVELOPMENT, 2007, 21 (01) :71-84
[4]  
CASTLE J, NAT GENET, DOI DOI 10.1038/NG64
[5]   A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing [J].
Das, Debopriya ;
Clark, Tyson A. ;
Schweitzer, Anthony ;
Yamamoto, Miki ;
Marr, Henry ;
Arribere, Josh ;
Minovitsky, Simon ;
Poliakov, Alexander ;
Dubchak, Inna ;
Blume, John E. ;
Conboy, John G. .
NUCLEIC ACIDS RESEARCH, 2007, 35 (14) :4845-4857
[6]   Functional coordination of alternative splicing in the mammalian central nervous system [J].
Fagnani, Matthew ;
Barash, Yoseph ;
Ip, Joanna ;
Misquitta, Christine ;
Pan, Qun ;
Saltzman, Arneet L. ;
Shai, Ofer ;
Lee, Leo ;
Rozenhek, Aviad ;
Mohammad, Naveed ;
Willaime-Morawek, Sandrine ;
Babak, Tomas ;
Zhang, Wen ;
Hughes, Timothy R. ;
van der Kooy, Derek ;
Frey, Brendan J. ;
Blencowe, Benjamin J. .
GENOME BIOLOGY, 2007, 8 (06)
[7]   SnapShot: The splicing regulatory machinery [J].
Gabut, Mathieu ;
Chaudhry, Sidharth ;
Blencowe, Benjamin J. .
CELL, 2008, 133 (01) :192-U1
[8]   Target RNA motif and target mRNAs of the Quaking STAR protein [J].
Galarneau, A ;
Richard, S .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (08) :691-698
[9]   Alternative splicing: increasing diversity in the proteomic world [J].
Graveley, BR .
TRENDS IN GENETICS, 2001, 17 (02) :100-107
[10]   Muscleblind proteins regulate alternative splicing [J].
Ho, TH ;
Charlet-B, N ;
Poulos, MG ;
Singh, G ;
Swanson, MS ;
Cooper, TA .
EMBO JOURNAL, 2004, 23 (15) :3103-3112