Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter

被引:337
作者
Dexheimer, TS
Sun, D
Hurley, LH [1 ]
机构
[1] Univ Arizona, Coll Pharm, Tucson, AZ 85721 USA
[2] Arizona Canc Ctr, Tucson, AZ 85724 USA
[3] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA
关键词
D O I
10.1021/ja0563861
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The human bcl-2 gene contains a GC-rich region upstream of the P1 promoter that has been shown to be critically involved in the regulation of bcl-2 gene expression. We have demonstrated that the guanine-rich strand of the DNA in this region can form any one of three distinct intramolecular G-quadruplex structures. Mutation and deletion analysis permitted isolation and identification of three overlapping DNA sequences within this element that formed the three individual G-quadruplexes. Each of these was characterized using nondenaturing gel analysis, DMS footprinting, and circular dichroism. The central G-quadruplex, which is the most stable, forms a mixed parallel/antiparallel structure consisting of three tetrads connected by loops of one, seven, and three bases. Three different G-quadruplex-interactive agents were found to further stabilize these structures, with individual selectivity toward one or more of these G-quadruplexes. Collectively, these results suggest that the multiple G-quadruplexes identified in the promoter region of the bc/-2 gene are likely to play a similar role to the G-quadruplexes in the c-myc promoter in that their formation could serve to modulate gene transcription. Last, we demonstrate that the complexity of the G-quadruplexes in the bcl-2 promoter extends beyond the ability to form any one of three separate G-quadruplexes to each having the capacity to form either three or six different loop isomers. These results are discussed in relation to the biological significance of this G-quadruplex-forming element in modulation of bcl-2 gene expression and the inherent complexity of the system where different G-quadruplexes and loop isomers are possible.
引用
收藏
页码:5404 / 5415
页数:12
相关论文
共 75 条
[1]   The Bcl-2 protein family: Arbiters of cell survival [J].
Adams, JM ;
Cory, S .
SCIENCE, 1998, 281 (5381) :1322-1326
[2]   THE PROTOONCOGENE BCL-2 CAN SELECTIVELY RESCUE NEUROTROPHIC FACTOR-DEPENDENT NEURONS FROM APOPTOSIS [J].
ALLSOPP, TE ;
WYATT, S ;
PATERSON, HF ;
DAVIES, AM .
CELL, 1993, 73 (02) :295-307
[3]  
Baretton GB, 1996, CANCER, V77, P255, DOI 10.1002/(SICI)1097-0142(19960115)77:2<255::AID-CNCR6>3.0.CO
[4]  
2-L
[5]   STRUCTURE AND FUNCTION OF TELOMERES [J].
BLACKBURN, EH .
NATURE, 1991, 350 (6319) :569-573
[6]   OLIGONUCLEOTIDE INTERACTIONS .3. CIRCULAR DICHROISM STUDIES OF CONFORMATION OF DEOXYOLIGONUCLEOTIDES [J].
CANTOR, CR ;
WARSHAW, MM ;
SHAPIRO, H .
BIOPOLYMERS, 1970, 9 (09) :1059-&
[7]   BCL-2 FAMILY: Regulators of cell death [J].
Chao, DT ;
Korsmeyer, SJ .
ANNUAL REVIEW OF IMMUNOLOGY, 1998, 16 :395-419
[8]   CLONING AND STRUCTURAL-ANALYSIS OF CDNAS FOR BCL-2 AND A HYBRID BCL-2/IMMUNOGLOBULIN TRANSCRIPT RESULTING FROM THE T(14-18) TRANSLOCATION [J].
CLEARY, ML ;
SMITH, SD ;
SKLAR, J .
CELL, 1986, 47 (01) :19-28
[9]   An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution [J].
Dai, JX ;
Dexheimer, TS ;
Chen, D ;
Carver, M ;
Ambrus, A ;
Jones, RA ;
Yang, DZ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (04) :1096-1098
[10]   Biophysical and biological properties of quadruplex oligodeoxyribonucleotides [J].
Dapic, V ;
Abdomerovic, V ;
Marrington, R ;
Peberdy, J ;
Rodger, A ;
Trent, JO ;
Bates, PJ .
NUCLEIC ACIDS RESEARCH, 2003, 31 (08) :2097-2107