The importance of engineering physiological functionality into microbes

被引:59
作者
Zhang, Yanping [1 ]
Zhu, Yan [1 ]
Zhu, Yang [2 ,3 ]
Li, Yin [1 ]
机构
[1] Chinese Acad Sci, Inst Microbiol, Beijing 100101, Peoples R China
[2] TNO Qual Life, Dept Biosci, NL-3700 AJ Zeist, Netherlands
[3] Univ Wageningen & Res Ctr, Bioproc Engn Grp, NL-6700 EV Wageningen, Netherlands
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
FUEL ETHANOL-PRODUCTION; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; ZYMOMONAS-MOBILIS; LACTOCOCCUS-LACTIS; KLEBSIELLA-PNEUMONIAE; CORYNEBACTERIUM-GLUTAMICUM; CONTROLLED EXPRESSION; BIOFUELS PRODUCTION; METABOLIC PATHWAY;
D O I
10.1016/j.tibtech.2009.08.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Good physiological performance of industrial microbes is crucial for successful bioprocesses. Conventional metabolism-oriented engineering strategies often fail to obtain expected phenotypes owing to focusing narrowly on targeted metabolic capabilities while neglecting microbial physiological responses to environmental stresses. To meet the new challenges posed by the biotechnological production of fuels, chemicals and materials, microbes should exert strong physiological robustness and fitness, in addition to strong metabolic capabilities, to enable them to work efficiently in actual bioprocesses. Here, we address the importance of engineering physiological functionalities into microbes and illustrate the operation procedure. We believe that this physiology-oriented engineering strategy is a promising approach for improving the physiological performance of industrial microbes for efficient bioprocesses.
引用
收藏
页码:664 / 672
页数:9
相关论文
共 73 条
[1]   Metabolic engineering for bioproduction of sugar alcohols [J].
Akinterinwa, Olubolaji ;
Khankal, Reza ;
Cirino, Patrick Carmen .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (05) :461-467
[2]   Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production [J].
Aldiguier, AS ;
Alfenore, S ;
Cameleyre, X ;
Goma, G ;
Uribelarrea, JL ;
Guillouet, SE ;
Molina-Jouve, C .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2004, 26 (04) :217-222
[3]   Construction of lycopene-overproducing E-coli strains by combining systematic and combinatorial gene knockout targets [J].
Alper, H ;
Miyaoku, K ;
Stephanopoulos, G .
NATURE BIOTECHNOLOGY, 2005, 23 (05) :612-616
[4]   Engineering yeast transcription machinery for improved ethanol tolerance and production [J].
Alper, Hal ;
Moxley, Joel ;
Nevoigt, Elke ;
Fink, Gerald R. ;
Stephanopoulos, Gregory .
SCIENCE, 2006, 314 (5805) :1565-1568
[5]   Metabolic engineering for advanced biofuels production from Escherichia coli [J].
Atsumi, Shota ;
Liao, James C. .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (05) :414-419
[6]   The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures [J].
Berríos-Rivera, SJ ;
Bennett, GN ;
San, KY .
METABOLIC ENGINEERING, 2002, 4 (03) :230-237
[7]   Amino acid content of recombinant proteins influences the metabolic burden response [J].
Bonomo, J ;
Gill, RT .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 90 (01) :116-126
[8]   Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae [J].
Çakar, ZP ;
Seker, UOS ;
Tamerler, C ;
Sonderegger, M ;
Sauer, U .
FEMS YEAST RESEARCH, 2005, 5 (6-7) :569-578
[9]   Metabolic engineering and directed evolution for the production of pharmaceuticals [J].
Chartrain, M ;
Salmon, PM ;
Robinson, DK ;
Buckland, BC .
CURRENT OPINION IN BIOTECHNOLOGY, 2000, 11 (02) :209-214
[10]  
de Felipe FL, 1998, J BACTERIOL, V180, P3804