Exponential localization of Wannier functions in insulators

被引:249
作者
Brouder, Christian
Panati, Gianluca
Calandra, Matteo
Mourougane, Christophe
Marzari, Nicola
机构
[1] Univ Paris 06, CNRS, UMR 7590, Inst Mineral & Phys Milieux Condenses, F-75015 Paris, France
[2] Univ Paris 07, IPGP, F-75015 Paris, France
[3] Tech Univ Munich, Zentrum Math & Phys Dept, D-80290 Munich, Germany
[4] Inst Math Jussieu, F-75013 Paris, France
[5] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1103/PhysRevLett.98.046402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exponential localization of Wannier functions in two or three dimensions is proven for all insulators that display time-reversal symmetry, settling a long-standing conjecture. Our proof relies on the equivalence between the existence of analytic quasi-Bloch functions and the nullity of the Chern numbers (or of the Hall current) for the system under consideration. The same equivalence implies that Chern insulators cannot display exponentially localized Wannier functions. An explicit condition for the reality of the Wannier functions is identified.
引用
收藏
页数:4
相关论文
共 37 条
[1]  
BLOUNT EI, 1962, SOLID STATE PHYS, V13, P305
[2]   GENERAL INTERPOLATION SCHEME FOR ONE-ELECTRON ENERGIES OF A SOLID - DEFINITION OF WANNIER FUNCTIONS FOR A COMPLEX OF ENERGY BANDS [J].
BROSS, H .
ZEITSCHRIFT FUR PHYSIK, 1971, 243 (04) :311-+
[3]   Chern numbers for spin models of transition metal nanomagnets [J].
Canali, CM ;
Cehovin, A ;
MacDonald, AH .
PHYSICAL REVIEW LETTERS, 2003, 91 (04)
[4]   COMPLEX BAND STRUCTURES OF ZINCBLENDE MATERIALS [J].
CHANG, YC .
PHYSICAL REVIEW B, 1982, 25 (02) :605-619
[5]  
DECLOISEAUX J, 1964, PHYS REV, V135, pA685
[6]   Linear scaling electronic structure methods [J].
Goedecker, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (04) :1085-1123
[7]   Berry curvature on the Fermi surface: Anomalous Hall effect as a topological Fermi-liquid property [J].
Haldane, FDM .
PHYSICAL REVIEW LETTERS, 2004, 93 (20) :206602-1
[8]   CHERN NUMBER AND EDGE STATES IN THE INTEGER QUANTUM HALL-EFFECT [J].
HATSUGAI, Y .
PHYSICAL REVIEW LETTERS, 1993, 71 (22) :3697-3700
[9]  
KATZNELSON Y, 1976, INTRO HARMONIC ANAL
[10]   TOTAL-ENERGY GLOBAL OPTIMIZATIONS USING NONORTHOGONAL LOCALIZED ORBITALS [J].
KIM, JN ;
MAURI, F ;
GALLI, G .
PHYSICAL REVIEW B, 1995, 52 (03) :1640-1648