Recent decades have witnessed the explosive emergence of metal organic frameworks (MOFs) as functional ultrahigh surface area materials. Categorized as an intriguing class of hybrid materials, MOFs exhibit infinite crystalline lattices with inorganic vertices and molecular-scale organic linkers. Fortunately, the large internal surface areas and overall pore volumes, adjustable pore sizes, ultralow densities, and tunable framework-adsorbate interaction by ligand functionalization and metal choice, enable MOFs to be promising materials for wide applications. In particular, these remarkable properties render MOFs potential hydrogen storage materials. By virtue of their exceptionally high surface areas, unparalleled tenability and structural diversity, MOFs have become a hotspot of research within the scientific community. This paper reviews the different methods used for the synthesis of MOFs, the relationship between structural features and hydrogen adsorption, the strategies for hydrogen uptake improvement as well as the molecular simulation.