Effects of Metal Ions and Ligand Functionalization on Hydrogen Storage in Metal-Organic Frameworks by Spillover

被引:36
作者
Cao, Wenxiu [1 ]
Li, Yingwei [1 ]
Wang, Liming [1 ]
Liao, Shijun [1 ]
机构
[1] S China Univ Technol, Sch Chem & Chem Engn, Key Lab Fuel Cell Technol Guangdong Prov, Guangzhou 510640, Peoples R China
关键词
ADSORPTION PROPERTIES; CARBON NANOTUBES; SURFACE-AREA; CAPACITY; SORPTION; PLATINUM; CATALYST; SOLIDS; DESIGN; MIL-53;
D O I
10.1021/jp203607s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen storage by spillover is a promising technique to enhance the hydrogen uptakes in metal-organic frameworks (MOFs) at room temperatures. However, to date, little is known on the structure-property relationships of MOFs for spillover storage. In this work, the effects of chemical composition of MOFs on hydrogen storage by spillover were studied systematically. Two series of MOFs with similar surface areas and formula units but different metal ions (M) or organic linkers (L), M(OH)BDC (BDC = terephthalate) or Zn4OL3, were prepared and employed as the receptors for spiltover hydrogen atoms. It was found that the M(OH)BDC series with various metal ions exhibited very close hydrogen capacities at room temperature. However, the functionalization of the BDC ligand in IRMOF-1 with various groups affected the storage capacity by spillover significantly. The decorations of functional groups with strong electrophilicity (i.e., electron withdrawing ability) on the BDC linkers remarkably enhanced the hydrogen uptakes by spillover. The experimental results were in good agreement with the density functional theory (DFT) calculations, which showed that the hydrogenations of the ligands with electron-withdrawing groups were thermodynamically more favored than those with electron-donating ones on the MOF structures. The new findings could provide a potential way to fabricate new metal-organic frameworks with high hydrogen storage capacities by spillover at room temperature..
引用
收藏
页码:13829 / 13836
页数:8
相关论文
共 63 条
[1]   Hydrogen capacity of palladium-loaded carbon materials [J].
Ansón, A ;
Lafuente, E ;
Urriolabeitia, E ;
Navarro, R ;
Benito, AM ;
Maser, WK ;
Martínez, MT .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (13) :6643-6648
[2]   Hydrogen sorption on palladium-doped sepiolite-derived carbon nanofibers [J].
Back, Chang-Keun ;
Sandi, Giselle ;
Prakash, Jai ;
Hranisavljevic, Jasmina .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (33) :16225-16231
[3]   VIII(OH){O2C-C6H4-CO2}•(HO2C-C6H4-CO2H)x(DMF)y(H2O)z (or MIL-68), a new vanadocarboxylate with a large pore hybrid topology:: reticular synthesis with infinite inorganic building blocks? [J].
Barthelet, K ;
Marrot, J ;
Férey, G ;
Riou, D .
CHEMICAL COMMUNICATIONS, 2004, (05) :520-521
[4]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[5]   ON REDUCTION OF TUNGSTEN TRIOXIDE ACCELERATED BY PLATINUM AND WATER [J].
BENSON, JE ;
KOHN, HW ;
BOUDART, M .
JOURNAL OF CATALYSIS, 1966, 5 (02) :307-&
[6]   SPILLOVER IN HETEROGENEOUS CATALYSIS [J].
CONNER, WC ;
FALCONER, JL .
CHEMICAL REVIEWS, 1995, 95 (03) :759-788
[7]   Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate [J].
Dailly, A ;
Vajo, JJ ;
Ahn, CC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (03) :1099-1101
[8]   Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks [J].
Deng, Hexiang ;
Doonan, Christian J. ;
Furukawa, Hiroyasu ;
Ferreira, Ricardo B. ;
Towne, John ;
Knobler, Carolyn B. ;
Wang, Bo ;
Yaghi, Omar M. .
SCIENCE, 2010, 327 (5967) :846-850
[9]   Hydrogen storage using carbon adsorbents: past, present and future [J].
Dillon, AC ;
Heben, MJ .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (02) :133-142
[10]   Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J].
Eddaoudi, M ;
Kim, J ;
Rosi, N ;
Vodak, D ;
Wachter, J ;
O'Keeffe, M ;
Yaghi, OM .
SCIENCE, 2002, 295 (5554) :469-472