Genetically engineered Pseudomonas:: a factory of new bioplastics with broad applications

被引:54
作者
Olivera, ER
Carnicero, D
Jodra, R
Miñambres, B
García, B
Abraham, GA
Gallardo, A
San Román, J
García, JL
Naharro, G
Luengo, JM [1 ]
机构
[1] Univ Leon, Fac Vet, Dept Bioquim & Biol Mol, Leon 24007, Spain
[2] CSIC, Inst Ciencia & Tecnol Polimeros, E-28006 Madrid, Spain
[3] CSIC, Ctr Invest Biol, Dept Mol Microbiol, E-28006 Madrid, Spain
[4] Univ Leon, Fac Vet, Dept Patol Anim Sanidad Anim, Leon 24007, Spain
关键词
D O I
10.1046/j.1462-2920.2001.00224.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
New bioplastics containing aromatic or mixtures of aliphatic and aromatic monomers have been obtained using genetically engineered strains of Pseudomonas putida. The mutation (-) or deletion (Delta) of some of the genes involved in the beta -oxidation pathway (fadA(-), fadB(-) Delta fadA or Delta fadBA mutants) elicits a strong intracellular accumulation of unusual homo- or co-polymers that dramatically alter the morphology of these bacteria, as more than 90% of the cytoplasm is occupied by these macromolecules. The introduction of a blockade in the beta -oxidation pathway, or in other related catabolic routes, has allowed the synthesis of polymers other than those accumulated in the wild type (with regard to both monomer size and relative percentage), the accumulation of certain intermediates that are rapidly catabolized in the wild type and the accumulation in the culture broths of end catabolites that, as in the case of phenylacetic acid, phenylbutyric acid, trans-cinnamic acid or their derivatives, have important medical or pharmaceutical applications (antitumoral, analgesic, radiopotentiators, chemopreventive or antihelmintic). Furthermore, using one of these polyesters (poly 3-hydroxy-6-phenylhexanoate), we obtained polymeric microspheres that could be used as drug vehicles.
引用
收藏
页码:612 / 618
页数:7
相关论文
共 35 条
[21]  
Miller AC, 1997, INT J RADIAT BIOL, V72, P211, DOI 10.1080/095530097143437
[22]   Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U:: The phenylacetyl-CoA catabolon [J].
Olivera, ER ;
Miñambres, B ;
García, B ;
Muñiz, C ;
Moreno, MA ;
Ferrández, A ;
Díaz, E ;
García, JL ;
Luengo, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :6419-6424
[23]   Two different pathways are involved in the β-oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U:: genetic studies and biotechnological applications [J].
Olivera, ER ;
Carnicero, D ;
García, B ;
Miñambres, B ;
Moreno, MA ;
Cañedo, L ;
DiRusso, CC ;
Naharro, G ;
Luengo, JM .
MOLECULAR MICROBIOLOGY, 2001, 39 (04) :863-874
[24]   Radiopotentiation of human brain tumor cells by sodium phenylacetate [J].
Ozawa, T ;
Lu, RM ;
Hu, LJ ;
Lamborn, KR ;
Prados, MD ;
Deen, DF .
CANCER LETTERS, 1999, 142 (02) :139-146
[25]   Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages [J].
Pahan, K ;
Sheikh, FG ;
Namboodiri, AMS ;
Singh, I .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (11) :2671-2679
[26]   Three cases of intravenous sodium benzoate and sodium phenylacetate toxicity occurring in the treatment of acute hyperammonaemia [J].
Praphanproj, V ;
Boyadjiev, SA ;
Waber, LJ ;
Brusilow, SW ;
Geraghty, MT .
JOURNAL OF INHERITED METABOLIC DISEASE, 2000, 23 (02) :129-136
[27]  
Prasanna P, 1995, CLIN CANCER RES, V1, P865
[28]  
SCHANDA J, 1994, COLOR RES APPL, V19, P145
[29]   WASTE NITROGEN-EXCRETION VIA AMINO-ACID ACYLATION - BENZOATE AND PHENYLACETATE IN LYSINURIC PROTEIN INTOLERANCE [J].
SIMELL, O ;
SIPILA, I ;
RAJANTIE, J ;
VALLE, DL ;
BRUSILOW, SW .
PEDIATRIC RESEARCH, 1986, 20 (11) :1117-1121
[30]  
STEINBUCHEL A, 1995, FEMS MICROBIOL LETT, V128, P219, DOI 10.1111/j.1574-6968.1995.tb07528.x