Computer aided manual validation of mass spectrometry-based proteomic data

被引:23
作者
Curran, Timothy G. [1 ,2 ]
Bryson, Bryan D. [1 ,2 ]
Reigelhaupt, Michael [2 ,3 ]
Johnson, Hannah [1 ,2 ]
White, Forest M. [1 ,2 ]
机构
[1] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[2] MIT, Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Mass spectrometry; Tandem mass spectrometry; Protein identification; Protein post translational modification; Computational analysis; PHOSPHORYLATION; PEPTIDES; SEQUENCE; PLATFORM;
D O I
10.1016/j.ymeth.2013.03.004
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Advances in mass spectrometry-based proteomic technologies have increased the speed of analysis and the depth provided by a single analysis. Computational tools to evaluate the accuracy of peptide identifications from these high-throughput analyses have not kept pace with technological advances; currently the most common quality evaluation methods are based on statistical analysis of the likelihood of false positive identifications in large-scale data sets. While helpful, these calculations do not consider the accuracy of each identification, thus creating a precarious situation for biologists relying on the data to inform experimental design. Manual validation is the gold standard approach to confirm accuracy of database identifications, but is extremely time-intensive. To palliate the increasing time required to manually validate large proteomic datasets, we provide computer aided manual validation software (CAMV) to expedite the process. Relevant spectra are collected, catalogued, and pre-labeled, allowing users to efficiently judge the quality of each identification and summarize applicable quantitative information. CAMV significantly reduces the burden associated with manual validation and will hopefully encourage broader adoption of manual validation in mass spectrometry-based proteomics. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:219 / 226
页数:8
相关论文
共 18 条
[1]   A probability-based approach for high-throughput protein phosphorylation analysis and site localization [J].
Beausoleil, Sean A. ;
Villen, Judit ;
Gerber, Scott A. ;
Rush, John ;
Gygi, Steven P. .
NATURE BIOTECHNOLOGY, 2006, 24 (10) :1285-1292
[2]   A cross-platform toolkit for mass spectrometry and proteomics [J].
Chambers, Matthew C. ;
Maclean, Brendan ;
Burke, Robert ;
Amodei, Dario ;
Ruderman, Daniel L. ;
Neumann, Steffen ;
Gatto, Laurent ;
Fischer, Bernd ;
Pratt, Brian ;
Egertson, Jarrett ;
Hoff, Katherine ;
Kessner, Darren ;
Tasman, Natalie ;
Shulman, Nicholas ;
Frewen, Barbara ;
Baker, Tahmina A. ;
Brusniak, Mi-Youn ;
Paulse, Christopher ;
Creasy, David ;
Flashner, Lisa ;
Kani, Kian ;
Moulding, Chris ;
Seymour, Sean L. ;
Nuwaysir, Lydia M. ;
Lefebvre, Brent ;
Kuhlmann, Frank ;
Roark, Joe ;
Rainer, Paape ;
Detlev, Suckau ;
Hemenway, Tina ;
Huhmer, Andreas ;
Langridge, James ;
Connolly, Brian ;
Chadick, Trey ;
Holly, Krisztina ;
Eckels, Josh ;
Deutsch, Eric W. ;
Moritz, Robert L. ;
Katz, Jonathan E. ;
Agus, David B. ;
MacCoss, Michael ;
Tabb, David L. ;
Mallick, Parag .
NATURE BIOTECHNOLOGY, 2012, 30 (10) :918-920
[3]   Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment [J].
Cox, Juergen ;
Neuhauser, Nadin ;
Michalski, Annette ;
Scheltema, Richard A. ;
Olsen, Jesper V. ;
Mann, Matthias .
JOURNAL OF PROTEOME RESEARCH, 2011, 10 (04) :1794-1805
[4]   Using annotated peptide mass spectrum libraries for protein identification [J].
Craig, R. ;
Cortens, J. C. ;
Fenyo, D. ;
Beavis, R. C. .
JOURNAL OF PROTEOME RESEARCH, 2006, 5 (08) :1843-1849
[5]   Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry [J].
Elias, Joshua E. ;
Gygi, Steven P. .
NATURE METHODS, 2007, 4 (03) :207-214
[6]   Molecular Characterization of EGFR and EGFRvIII Signaling Networks in Human Glioblastoma Tumor Xenografts [J].
Johnson, Hannah ;
Del Rosario, Amanda M. ;
Bryson, Bryan D. ;
Schroeder, Mark A. ;
Sarkaria, Jann N. ;
White, Forest M. .
MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (12) :1724-1740
[7]   Assigning significance to peptides identified by tandem mass spectrometry using decoy databases [J].
Kaell, Lukas ;
Storey, John D. ;
MacCoss, Michael J. ;
Noble, William Stafford .
JOURNAL OF PROTEOME RESEARCH, 2008, 7 (01) :29-34
[8]   Modeling peptide fragmentation with dynamic Bayesian networks for peptide identification [J].
Klammer, Aaron A. ;
Reynolds, Sheila M. ;
Bilmes, Jeff A. ;
MacCoss, Michael J. ;
Noble, William Stafford .
BIOINFORMATICS, 2008, 24 (13) :I348-I356
[9]   Integrated data management and validation platform for phosphorylated tandem mass spectrometry data [J].
Lahesmaa-Korpinen, Anna-Maria ;
Carlson, Scott M. ;
White, Forest M. ;
Hautaniemi, Sampsa .
PROTEOMICS, 2010, 10 (19) :3515-3524
[10]   Prophossi: automating expert validation of phosphopeptide-spectrum matches from tandem mass spectrometry [J].
Martin, David M. A. ;
Nett, Isabelle R. E. ;
Vandermoere, Franck ;
Barber, Jonathan D. ;
Morrice, Nicholas A. ;
Ferguson, Michael A. J. .
BIOINFORMATICS, 2010, 26 (17) :2153-2159