Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C -: How variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases

被引:81
作者
Pell, G
Szabo, L
Charnock, SJ
Xie, HF
Gloster, TM
Davies, GJ
Gilbert, HJ
机构
[1] Newcastle Univ, Sch Cell & Mol Biosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Univ York, Dept Chem, Struct Biol Lab, York YO10 5YW, N Yorkshire, England
关键词
D O I
10.1074/jbc.M311947200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microbial degradation of the plant cell wall is the primary mechanism by which carbon is utilized in the biosphere. The hydrolysis of xylan, by endo-beta-1,4-xylanases (xylanases), is one of the key reactions in this process. Although amino acid sequence variations are evident in the substrate binding cleft of "family GH10" xylanases (see afmb.cnrs-mrs.fr/CAZY/), their biochemical significance is unclear. The Cellvibrio japonicus GH10 xylanase CjXyn10C is a bi-modular enzyme comprising a GH10 catalytic module and a family 15 carbohydrate-binding module. The three-dimensional structure at 1.85 Angstrom, presented here, shows that the sequence joining the two modules is disordered, confirming that linker sequences in modular glycoside hydrolases are highly flexible. CjXyn10C hydrolyzes xylan at a rate similar to other previously described GH10 enzymes but displays very low activity against xylooligosaccharides. The poor activity on short substrates reflects weak binding at the -2 subsite of the enzyme. Comparison of CjXyn10C with other family GH10 enzymes reveals "polymorphisms" in the substrate binding cleft including a glutamate/glycine substitution at the -2 subsite and a tyrosine insertion in the -2/-3 glycone region of the substrate binding cleft, both of which contribute to the unusual properties of the enzyme. The CjXyn10C-substrate complex shows that Tyr-340 stacks against the xylose residue located at the -3 subsite, and the properties of Y340A support the view that this tyrosine plays a pivotal role in substrate binding at this location. The generic importance of using CjXyn10C as a template in predicting the biochemical properties of GH10 xylanases is discussed.
引用
收藏
页码:11777 / 11788
页数:12
相关论文
共 44 条
[1]   Substrate specificity in glycoside hydrolase family 10 - Tyrosine 87 and Leucine 314 play a pivotal, role in discriminating between glucose and xylose binding in the proximal active site of pseudomonas cellulosa xylanase 10A [J].
Andrews, SR ;
Charnock, SJ ;
Lakey, JH ;
Davies, GJ ;
Claeyssens, M ;
Nerinckx, W ;
Underwood, M ;
Sinnott, ML ;
Warren, RAJ ;
Gilbert, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (30) :23027-23033
[2]   Influence of the aglycone region of the substrate binding cleft of Pseudomonas xylanase 10A on catalysis [J].
Armand, S ;
Andrews, SR ;
Charnock, SJ ;
Gilbert, HJ .
BIOCHEMISTRY, 2001, 40 (25) :7404-7409
[3]  
ATKINS EDT, 1992, PROGR BIOTECHNOL, V7, P39
[4]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[5]   Pseudomonas cellulosa expresses a single membrane-bound glycoside hydrolase family 51 arabinofuranosidase [J].
Beylot, MH ;
Emami, K ;
McKie, VA ;
Gilbert, HJ ;
Pell, G .
BIOCHEMICAL JOURNAL, 2001, 358 :599-605
[6]   Endo-beta-1,4-xylanase families: differences in catalytic properties [J].
Biely, P ;
Vrsanska, M ;
Tenkanen, M ;
Kluepfel, D .
JOURNAL OF BIOTECHNOLOGY, 1997, 57 (1-3) :151-166
[7]   SUBSTRATE-BINDING SITE OF ENDO-1,4-BETA-XYLANASE OF THE YEAST CRYPTOCOCCUS-ALBIDUS [J].
BIELY, P ;
KRATKY, Z ;
VRSANSKA, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1981, 119 (03) :559-564
[8]   Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates [J].
Black, GW ;
Rixon, JE ;
Clarke, JH ;
Hazlewood, GP ;
Theodorou, MK ;
Morris, P ;
Gilbert, HJ .
BIOCHEMICAL JOURNAL, 1996, 319 :515-520
[9]   Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates [J].
Black, GW ;
Rixon, JE ;
Clarke, JH ;
Hazlewood, GP ;
Ferreira, LMA ;
Bolam, DN ;
Gilbert, HJ .
JOURNAL OF BIOTECHNOLOGY, 1997, 57 (1-3) :59-69
[10]  
BRETT CT, 1996, PHYSL BIOCH PLANT CE, V1