Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C -: How variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases

被引:81
作者
Pell, G
Szabo, L
Charnock, SJ
Xie, HF
Gloster, TM
Davies, GJ
Gilbert, HJ
机构
[1] Newcastle Univ, Sch Cell & Mol Biosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Univ York, Dept Chem, Struct Biol Lab, York YO10 5YW, N Yorkshire, England
关键词
D O I
10.1074/jbc.M311947200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microbial degradation of the plant cell wall is the primary mechanism by which carbon is utilized in the biosphere. The hydrolysis of xylan, by endo-beta-1,4-xylanases (xylanases), is one of the key reactions in this process. Although amino acid sequence variations are evident in the substrate binding cleft of "family GH10" xylanases (see afmb.cnrs-mrs.fr/CAZY/), their biochemical significance is unclear. The Cellvibrio japonicus GH10 xylanase CjXyn10C is a bi-modular enzyme comprising a GH10 catalytic module and a family 15 carbohydrate-binding module. The three-dimensional structure at 1.85 Angstrom, presented here, shows that the sequence joining the two modules is disordered, confirming that linker sequences in modular glycoside hydrolases are highly flexible. CjXyn10C hydrolyzes xylan at a rate similar to other previously described GH10 enzymes but displays very low activity against xylooligosaccharides. The poor activity on short substrates reflects weak binding at the -2 subsite of the enzyme. Comparison of CjXyn10C with other family GH10 enzymes reveals "polymorphisms" in the substrate binding cleft including a glutamate/glycine substitution at the -2 subsite and a tyrosine insertion in the -2/-3 glycone region of the substrate binding cleft, both of which contribute to the unusual properties of the enzyme. The CjXyn10C-substrate complex shows that Tyr-340 stacks against the xylose residue located at the -3 subsite, and the properties of Y340A support the view that this tyrosine plays a pivotal role in substrate binding at this location. The generic importance of using CjXyn10C as a template in predicting the biochemical properties of GH10 xylanases is discussed.
引用
收藏
页码:11777 / 11788
页数:12
相关论文
共 44 条
[11]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[12]   STRUCTURAL MODELS OF PRIMARY-CELL WALLS IN FLOWERING PLANTS - CONSISTENCY OF MOLECULAR-STRUCTURE WITH THE PHYSICAL-PROPERTIES OF THE WALLS DURING GROWTH [J].
CARPITA, NC ;
GIBEAUT, DM .
PLANT JOURNAL, 1993, 3 (01) :1-30
[13]   The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved [J].
Charnock, SJ ;
Spurway, TD ;
Xie, HF ;
Beylot, MH ;
Virden, R ;
Warren, RAJ ;
Hazlewood, GP ;
Gilbert, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :32187-32199
[14]   Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan [J].
Charnock, SJ ;
Lakey, JH ;
Virden, R ;
Hughes, N ;
Sinnott, ML ;
Hazlewood, GP ;
Pickersgill, R ;
Gilbert, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (05) :2942-2951
[15]   Nomenclature for sugar-binding subsites in glycosyl hydrolases [J].
Davies, GJ ;
Wilson, KS ;
Henrissat, B .
BIOCHEMICAL JOURNAL, 1997, 321 :557-559
[16]   Substrate specificity in glycoside hydrolase family 10 - Structural and kinetic analysis of the streptomyces lividans xylanase 10A [J].
Ducros, V ;
Charnock, SJ ;
Derewenda, U ;
Derewenda, ZS ;
Dauter, Z ;
Dupont, C ;
Shareck, F ;
Morosoli, R ;
Kluepfel, D ;
Davies, GJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (30) :23020-23026
[17]   Evidence for temporal regulation of the two Pseudomonas cellulosa xylanases belonging to glycoside hydrolase family 11 [J].
Emami, K ;
Nagy, T ;
Fontes, CMGA ;
Ferreira, LMA ;
Gilbert, HJ .
JOURNAL OF BACTERIOLOGY, 2002, 184 (15) :4124-4133
[18]   An extensively modified version of MolScript that includes greatly enhanced coloring capabilities [J].
Esnouf, RM .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1997, 15 (02) :132-+
[19]   SPATIAL SEPARATION OF PROTEIN DOMAINS IS NOT NECESSARY FOR CATALYTIC ACTIVITY OR SUBSTRATE BINDING IN A XYLANASE [J].
FERREIRA, LMA ;
DURRANT, AJ ;
HALL, J ;
HAZLEWOOD, GP ;
GILBERT, HJ .
BIOCHEMICAL JOURNAL, 1990, 269 (01) :261-264
[20]   Crystal structure of Streptomyces olivaceoviridis E-86 β-xylanase containing xylan-binding domain [J].
Fujimoto, Z ;
Kuno, A ;
Kaneko, S ;
Yoshida, S ;
Kobayashi, H ;
Kusakabe, I ;
Mizuno, H .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (03) :575-585