A whole brain fMRI atlas generated via spatially constrained spectral clustering

被引:1113
作者
Craddock, R. Cameron [1 ]
James, G. Andrew [2 ]
Holtzheimer, Paul E., III [3 ]
Hu, Xiaoping P. [4 ,5 ]
Mayberg, Helen S. [3 ]
机构
[1] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA
[2] Univ Arkansas Med Sci, Inst Psychiat Res, Brain Imaging Res Ctr, Little Rock, AR 72205 USA
[3] Emory Univ, Dept Psychiat & Behav Sci, Sch Med, Atlanta, GA USA
[4] Emory Univ, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[5] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
resting state; functional connectivity; regions of interest; clustering; atlas; FUNCTIONAL CONNECTIVITY; PARCELLATION; CORTEX; ARCHITECTURE; MRI; PREDICTION; NETWORKS;
D O I
10.1002/hbm.21333
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Connectivity analyses and computational modeling of human brain function from fMRI data frequently require the specification of regions of interests (ROIs). Several analyses have relied on atlases derived from anatomical or cyto-architectonic boundaries to specify these ROIs, yet the suitability of atlases for resting state functional connectivity (FC) studies has yet to be established. This article introduces a data-driven method for generating an ROI atlas by parcellating whole brain resting-state fMRI data into spatially coherent regions of homogeneous FC. Several clustering statistics are used to compare methodological trade-offs as well as determine an adequate number of clusters. Additionally, we evaluate the suitability of the parcellation atlas against four ROI atlases (Talairach and Tournoux, Harvard-Oxford, Eickoff-Zilles, and Automatic Anatomical Labeling) and a random parcellation approach. The evaluated anatomical atlases exhibit poor ROI homogeneity and do not accurately reproduce FC patterns present at the voxel scale. In general, the proposed functional and random parcellations perform equivalently for most of the metrics evaluated. ROI size and hence the number of ROIs in a parcellation had the greatest impact on their suitability for FC analysis. With 200 or fewer ROIs, the resulting parcellations consist of ROIs with anatomic homology, and thus offer increased interpretability. Parcellation results containing higher numbers of ROIs (600 or 1,000) most accurately represent FC patterns present at the voxel scale and are preferable when interpretability can be sacrificed for accuracy. The resulting atlases and clustering software have been made publicly available at: . Hum Brain Mapp, 2012. (c) 2011 Wiley Periodicals, Inc
引用
收藏
页码:1914 / 1928
页数:15
相关论文
共 56 条
[1]  
[Anonymous], 2003, Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
[2]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[3]   Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part I: Reproducibility [J].
Baumgartner, R ;
Scarth, G ;
Teichtmeister, C ;
Somorjai, R ;
Moser, E .
JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 1997, 7 (06) :1094-1101
[4]   Connectivity-Based Parcellation of Human Cingulate Cortex and Its Relation to Functional Specialization [J].
Beckmann, Matthias ;
Johansen-Berg, Heidi ;
Rushworth, Matthew F. S. .
JOURNAL OF NEUROSCIENCE, 2009, 29 (04) :1175-1190
[5]   Identification of large-scale networks in the brain using fMRI [J].
Bellec, P ;
Perlbarg, V ;
Jbabdi, S ;
Pélégrini-Issac, W ;
Anton, JL ;
Doyon, J ;
Benali, H .
NEUROIMAGE, 2006, 29 (04) :1231-1243
[6]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[7]   Defining functional areas in individual human brains using resting functional connectivity MRI [J].
Cohen, Alexander L. ;
Fair, Damien A. ;
Dosenbach, Nico U. F. ;
Miezin, Francis M. ;
Dierker, Donna ;
Van Essen, David C. ;
Schlaggar, Bradley L. ;
Petersen, Steven E. .
NEUROIMAGE, 2008, 41 (01) :45-57
[8]  
Cordes D, 2001, AM J NEURORADIOL, V22, P1326
[9]   AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [J].
Cox, RW .
COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03) :162-173
[10]   Disease State Prediction From Resting State Functional Connectivity [J].
Craddock, R. Cameron ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (06) :1619-1628