Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials

被引:151
作者
Huxtable, S [1 ]
Cahill, DG
Fauconnier, V
White, JO
Zhao, JC
机构
[1] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[3] GE Co, Global Res, Schenectady, NY 12301 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat1114
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Combinatorial methods offer an efficient approach for the development of new materials. Methods for generating combinatorial samples of materials, and methods for characterizing local composition and structure by electron microprobe analysis and electron-backscatter diffraction are relatively well developed(1-4). But a key component for combinatorial studies of materials is high-spatial-resolution measurements of the property of interest, for example, the magnetic, optical, electrical(5), mechanical(6) or thermal properties of each phase, composition or processing condition. Advances in the experimental methods used for mapping these properties will have a significant impact on materials science and engineering. Here we show how time-domain thermoreflectance can be used to image the thermal conductivity of the cross-section of a Nb-Ti-Cr-Si diffusion multiple, and thereby demonstrate rapid and quantitative measurements of thermal transport properties for combinatorial studies of materials. The lateral spatial resolution of the technique is 3.4 mum, and the time required to measure a 100 x 100 pixel image is approximate to 1h. The thermal conductivity of TiCr2 decreases by a factor of two in crossing from the near-stoichiometric side of the phase to the Ti-rich side; and the conductivity of (Ti,Nb)(3)Si shows a strong dependence on crystalline orientation.
引用
收藏
页码:298 / 301
页数:4
相关论文
共 20 条
[1]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[2]   Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique [J].
Capinski, WS ;
Maris, HJ ;
Ruf, T ;
Cardona, M ;
Ploog, K ;
Katzer, DS .
PHYSICAL REVIEW B, 1999, 59 (12) :8105-8113
[3]   Improved apparatus for picosecond pump-and-probe optical measurements [J].
Capinski, WS ;
Maris, HJ .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (08) :2720-2726
[4]   Thermal conductance of epitaxial interfaces [J].
Costescu, RM ;
Wall, MA ;
Cahill, DG .
PHYSICAL REVIEW B, 2003, 67 (05)
[5]   Quantitative microwave near-field microscopy of dielectric properties [J].
Gao, C ;
Xiang, XD .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (11) :3846-3851
[6]   MICRON-SCALE THERMAL CHARACTERIZATIONS OF INTERFACES PARALLEL OR PERPENDICULAR TO THE SURFACE [J].
LEPOUTRE, F ;
BALAGEAS, D ;
FORGE, P ;
HIRSCHI, S ;
JOULAUD, JL ;
ROCHAIS, D ;
CHEN, FC .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (04) :2208-2223
[7]   Measuring the anisotropic thermal diffusivity of silicon nitride grains by thermoreflectance microscopy [J].
Li, BC ;
Pottier, L ;
Roger, JP ;
Fournier, D ;
Watari, K ;
Hirao, K .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1999, 19 (08) :1631-1639
[8]   Scanning thermal microscopy [J].
Majumdar, A .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1999, 29 :505-585
[9]   Characterization of nanostructured metal films by picosecond acoustics and interferometry [J].
O'Hara, KE ;
Hu, XY ;
Cahill, DG .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (09) :4852-4858
[10]   AN IMPROVED TECHNIQUE FOR DETERMINING HARDNESS AND ELASTIC-MODULUS USING LOAD AND DISPLACEMENT SENSING INDENTATION EXPERIMENTS [J].
OLIVER, WC ;
PHARR, GM .
JOURNAL OF MATERIALS RESEARCH, 1992, 7 (06) :1564-1583