Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence

被引:312
作者
Guo, FQ [1 ]
Crawford, NM [1 ]
机构
[1] Univ Calif San Diego, Div Biol Sci, Sect Cell & Dev Biol, La Jolla, CA 92093 USA
关键词
D O I
10.1105/tpc.105.037770
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Arabidopsis thaliana protein nitric oxide synthase1 (NOS1) is needed for nitric oxide (NO) synthesis and signaling during defense responses, hormonal signaling, and flowering. The cellular localization of NOS1 was examined because it is predicted to be a mitochondrial protein. NOS1-green fluorescent protein fusions were localized by confocal microscopy to mitochondria in roots. Isolated mitochondria from leaves of wild-type plants supported Arg-stimulated NO synthesis that could be inhibited by NOS inhibitors and quenched by a NO scavenger; this NOS activity is absent in mitochondria isolated from nos1 mutant plants. Because mitochondria are a source of reactive oxygen species (ROS), which participate in senescence and programmed cell death, these parameters were examined in the nos1 mutant. Dark-induced senescence of detached leaves and intact plants progressed more rapidly in the mutant compared with the wild type. Hydrogen peroxide, superoxide anion, oxidized lipid, and oxidized protein levels were all higher in the mutant. These results demonstrate that NOS1 is a mitochondrial NOS that reduces ROS levels, mitigates oxidative damage, and acts as an antisenescence agent.
引用
收藏
页码:3436 / 3450
页数:15
相关论文
共 150 条
[31]   NITRIC-OXIDE AND NITROUS-OXIDE PRODUCTION BY SOYBEAN AND WINGED BEAN DURING THE INVIVO NITRATE REDUCTASE ASSAY [J].
DEAN, JV ;
HARPER, JE .
PLANT PHYSIOLOGY, 1986, 82 (03) :718-723
[32]   THE CONVERSION OF NITRITE TO NITROGEN OXIDE(S) BY THE CONSTITUTIVE NAD(P)H-NITRATE REDUCTASE ENZYME FROM SOYBEAN [J].
DEAN, JV ;
HARPER, JE .
PLANT PHYSIOLOGY, 1988, 88 (02) :389-395
[33]   Nitric oxide and nitric oxide synthase activity in plants [J].
Del Río, LA ;
Corpas, FJ ;
Barroso, JB .
PHYTOCHEMISTRY, 2004, 65 (07) :783-792
[34]   Mitochondrial and peroxisomal manganese superoxide dismutase:: differential expression during leaf senescence [J].
del Río, LA ;
Sandalio, LM ;
Altomare, DA ;
Zilinskas, BA .
JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 (384) :923-933
[35]   NO news is good news for plants [J].
Delledonne, M .
CURRENT OPINION IN PLANT BIOLOGY, 2005, 8 (04) :390-396
[36]   Nitric oxide functions as a signal in plant disease resistance [J].
Delledonne, M ;
Xia, YJ ;
Dixon, RA ;
Lamb, C .
NATURE, 1998, 394 (6693) :585-588
[37]   Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response [J].
Delledonne, M ;
Zeier, J ;
Marocco, A ;
Lamb, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :13454-13459
[38]   ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells [J].
Desikan, R ;
Cheung, MK ;
Bright, J ;
Henson, D ;
Hancock, JT ;
Neill, SJ .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (395) :205-212
[39]   Biochemistry of mitochondrial nitric-oxide synthase [J].
Elfering, SL ;
Sarkela, TM ;
Giulivi, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (41) :38079-38086
[40]   Oxidant signals and oxidative stress [J].
Finkel, T .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) :247-254