Identification and function of ryanodine receptor subtype 3 in non-pregnant mouse myometrial cells

被引:27
作者
Mironneau, J
Macrez, N
Morel, JL
Sorrentino, V
Mironneau, C
机构
[1] Univ Bordeaux 2, CNRS, UMR 5017, Lab Signalisat & Interact Cellulaires, F-33076 Bordeaux, France
[2] Univ Sienna, Dept Neurosci, Mol Med Sect, I-20132 Milan, Italy
[3] Ist Sci San Raffaele, DIBIT, I-20132 Milan, Italy
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2002年 / 538卷 / 03期
关键词
D O I
10.1113/jphysiol.2001.013046
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Subtype 3 of the ryanodine receptor (RYR3) is a ubiquitous Ca2+ release channel which is predominantly expressed in smooth muscle tissues and certain regions of the brain. We show by reverse transcription-polymerase chain reaction (RT-PCR) that non-pregnant mouse myometrial cells expressed only RYR3 and therefore could be a good model for studying the role of endogenous RYR3. Expression of RYR3 was confirmed by Western blotting and immunostaining. Confocal Ca2+ measurements revealed that in 1.7 mm extracellular Ca2+, neither caffeine nor photolysis of caged Ca2+ were able to trigger any Ca2+ responses, whereas in the same cells oxytocin activated propagated Ca2+ waves. However, under conditions of increased sarcoplasmic reticulum (SR) Ca2+ loading, brought about by superfusing myometrial cells in 10 mm extracellular Ca2+, all the myometrial cells responded to caffeine and photolysis of caged Ca2+, indicating that it was possible to activate RYR3. The caffeine-induced Ca2+ responses were inhibited by intracellular application of an anti-RYR3-specific antibody. Immunodetection of RYR3 with the same antibody revealed a rather homogeneous distribution of fluorescence in confocal cell sections. In agreement with these observations, spontaneous or triggered Ca2+ sparks were not detected. In conclusion, our results suggest that under conditions of increased SR Ca2+ loading, endogenous RYR3 may contribute to the Ca2+ responses of myometrial cells.
引用
收藏
页码:707 / 716
页数:10
相关论文
共 32 条
[1]   OXYTOCIN MOBILIZES CALCIUM FROM A UNIQUE HEPARIN-SENSITIVE AND THAPSIGARGIN-SENSITIVE STORE IN SINGLE MYOMETRIAL CELLS FROM PREGNANT RATS [J].
ARNAUDEAU, S ;
LEPRETRE, N ;
MIRONNEAU, J .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1994, 428 (01) :51-59
[2]   L-type and Ca2+ release channel-dependent hierarchical Ca2+ signalling in rat portal vein myocytes [J].
Arnaudeau, S ;
Boittin, FX ;
Macrez, N ;
Lavie, JL ;
Mironneau, C ;
Mironneau, J .
CELL CALCIUM, 1997, 22 (05) :399-411
[3]   Activation of calcium sparks by angiotensin II in vascular myocytes [J].
Arnaudeau, S ;
MacrezLepretre, N ;
Mironneau, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 222 (03) :809-815
[4]   Differential expression of ryanodine receptor RyR2 mRNA in the non-pregnant and pregnant human myometrium [J].
Awad, SS ;
Lamb, HK ;
Morgan, JM ;
Dunlop, W ;
Gillespie, JI .
BIOCHEMICAL JOURNAL, 1997, 322 :777-783
[5]   Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles [J].
Bertocchini, F ;
Ovitt, CE ;
Conti, A ;
Barone, V ;
Schöler, HR ;
Bottinelli, R ;
Reggiani, C ;
Sorrentino, V .
EMBO JOURNAL, 1997, 16 (23) :6956-6963
[6]   Inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channel dependent Ca2+ signalling in rat portal vein myocytes [J].
Boittin, FX ;
Coussin, F ;
Macrez, N ;
Mironneau, C ;
Mironneau, J .
CELL CALCIUM, 1998, 23 (05) :303-311
[7]   Norepinephrine-induced Ca2+ waves depend on InsP3 and ryanodine receptor activation in vascular myocytes [J].
Boittin, FX ;
Macrez, N ;
Halet, G ;
Mironneau, J .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1999, 277 (01) :C139-C151
[8]   Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells [J].
Chen, SRW ;
Li, XL ;
Ebisawa, K ;
Zhang, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (39) :24234-24246
[9]   Evidence for Ca2+ activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex [J].
Ching, LL ;
Williams, AJ ;
Sitsapesan, R .
CIRCULATION RESEARCH, 2000, 87 (03) :201-206
[10]   Requirement of ryanodine receptor subtypes 1 and 2 for Ca2+induced Ca2+ release in vascular myocytes [J].
Coussin, F ;
Macrez, N ;
Morel, JL ;
Mironneau, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (13) :9596-9603