Noncommutative geometry of angular momentum space U(su(2))

被引:47
作者
Batista, E [1 ]
Majid, S
机构
[1] Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, Brazil
[2] Univ London, Sch Math Sci, London E1 4NS, England
关键词
D O I
10.1063/1.1517395
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the standard angular momentum algebra [x(i),x(j)]=ilambdaepsilon(ijk)x(k) as a noncommutative manifold R-lambda(3). We show that there is a natural 4D differential calculus and obtain its cohomology and Hodge * operator. We solve the spin 0 wave equation and some aspects of the Maxwell or electromagnetic theory including solutions for a uniform electric current density, and we find a natural Dirac operator partial derivative. We embed R-lambda(3) inside a 4D noncommutative space-time which is the limit q-->1 of q-Minkowski space and show that R-lambda(3) has a natural quantum isometry group given by the quantum double C(SU(2))xU(su(2)) which is a singular limit of the q-Lorentz group. We view R-lambda(3) as a collection of all fuzzy spheres taken together. We also analyze the semiclassical limit via minimum uncertainty states \j,theta,phi> approximating classical positions in polar coordinates. (C) 2003 American Institute of Physics.
引用
收藏
页码:107 / 137
页数:31
相关论文
共 25 条
[1]  
Alekseev AY, 1999, J HIGH ENERGY PHYS
[2]  
ALEKSEEV AY, HEPTH9312004
[3]   Waves on noncommutative space-time and gamma-ray bursts [J].
Amelino-Camelia, G ;
Majid, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (27) :4301-4323
[4]   Topological field theory and the quantum double of SU(2) [J].
Bais, FA ;
Muller, NM .
NUCLEAR PHYSICS B, 1998, 530 (1-2) :349-400
[5]  
BALACHANDRAN AP, HEPTH0007030
[6]   TENSOR REPRESENTATION OF THE QUANTUM GROUP SLQ(2,C) AND QUANTUM MINKOWSKI SPACE [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
SCHOLL, M ;
WATAMURA, S .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1990, 48 (01) :159-165
[7]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[8]  
FOCK V, 1992, 7292 ITEP
[9]  
Gomez X, 2002, LETT MATH PHYS, V60, P221, DOI 10.1023/A:1016287607529
[10]  
GOMEZ X, IN PRESS J ALGEBRA