Generation of complex concentration profiles in microchannels in a logarithmically small number of steps

被引:79
作者
Campbell, Kyle [1 ]
Groisman, Alex [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
关键词
D O I
10.1039/b610011b
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We describe the principles of design and the architecture of planar microfluidic networks producing concentration gradients with the shape of any given monotonic function. Each microfluidic network is fed by two separate source solutions and delivers to its outlet a set of N solutions that all differ in concentration. Inside the network, the source solutions flow through a series of k = log(2)(N-1) stages, where they are repeatedly split and mixed. Streams of the solutions emerging from the network are combined to create a single stream with the desired shape of the concentration profile across the direction of flow. To demonstrate the functionality of the proposed architecture, we have built and tested three networks with k = 4 and N = 17 that generate an exponential concentration profile, a linear profile, and a profile with a shape of two fused branches of a parabola.
引用
收藏
页码:264 / 272
页数:9
相关论文
共 30 条
[1]   Fabrication of gradient hydrogels using a microfluidics/photopolymerization process [J].
Burdick, JA ;
Khademhosseini, A ;
Langer, R .
LANGMUIR, 2004, 20 (13) :5153-5156
[2]   Generation of gradients having complex shapes using microfluidic networks [J].
Dertinger, SKW ;
Chiu, DT ;
Jeon, NL ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2001, 73 (06) :1240-1246
[3]   Gradients of substrate-bound laminin orient axonal specification of neurons [J].
Dertinger, SKW ;
Jiang, XY ;
Li, ZY ;
Murthy, VN ;
Whitesides, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12542-12547
[4]   Potentiometric titrations in a poly(dimethylsiloxane)-based microfluidic device [J].
Ferrigno, R ;
Lee, JN ;
Jiang, XY ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2004, 76 (08) :2273-2280
[5]   Microfluidic memory and control devices [J].
Groisman, A ;
Enzelberger, M ;
Quake, SR .
SCIENCE, 2003, 300 (5621) :955-958
[6]  
GUNAWAN RC, 2006, LANGMUIR, P2006
[7]   Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays [J].
Hung, PJ ;
Lee, PJ ;
Sabounchi, P ;
Lin, R ;
Lee, LP .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 89 (01) :1-8
[8]   Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients [J].
Irimia, D ;
Liu, SY ;
Tharp, WG ;
Samadani, A ;
Toner, M ;
Poznansky, MC .
LAB ON A CHIP, 2006, 6 (02) :191-198
[9]   Universal microfluidic gradient generator [J].
Irimia, Daniel ;
Geba, Dan A. ;
Toner, Mehmet .
ANALYTICAL CHEMISTRY, 2006, 78 (10) :3472-3477
[10]   Generation of solution and surface gradients using microfluidic systems [J].
Jeon, NL ;
Dertinger, SKW ;
Chiu, DT ;
Choi, IS ;
Stroock, AD ;
Whitesides, GM .
LANGMUIR, 2000, 16 (22) :8311-8316