Gray-scale structuring element decomposition

被引:8
作者
Camps, OI
Kanungo, T
Haralick, RM
机构
[1] PENN STATE UNIV, DEPT COMP SCI & ENGN, UNIVERSITY PK, PA 16802 USA
[2] UNIV WASHINGTON, DEPT ELECT ENGN, SEATTLE, WA 98195 USA
关键词
D O I
10.1109/83.481675
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Efficient implementation of morphological operations requires the decomposition of structuring elements into the dilation of smaller structuring elements, Zhuang and Haralick presented a search algorithm to find optimal decompositions of structuring elements in binary morphology. In this paper, we use the concepts of Top of a set and Umbra of a surface to extend this algorithm to find an optimal decomposition of any arbitrary gray-scale structuring element.
引用
收藏
页码:111 / 120
页数:10
相关论文
共 12 条
[1]   THRESHOLD DECOMPOSITION OF MULTIDIMENSIONAL RANKED ORDER OPERATIONS [J].
FITCH, JP ;
COYLE, EJ ;
GALLAGHER, NC .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (05) :445-450
[2]   SEPARABLE DECOMPOSITIONS AND APPROXIMATIONS OF GREYSCALE MORPHOLOGICAL TEMPLATES [J].
GADER, PD .
CVGIP-IMAGE UNDERSTANDING, 1991, 53 (03) :288-296
[3]   IMAGE-ANALYSIS USING MATHEMATICAL MORPHOLOGY [J].
HARALICK, RM ;
STERNBERG, SR ;
ZHUANG, XH .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (04) :532-550
[4]   ALGORITHMS FOR THE DECOMPOSITION OF GRAY-SCALE MORPHOLOGICAL OPERATIONS [J].
JONES, R ;
SVALBE, I .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (06) :581-588
[5]  
Kanungo T., 1992, Journal of Mathematical Imaging and Vision, V2, P51, DOI 10.1007/BF00123881
[6]  
KANUNGO T, 1992, JUN P IEEE C COMP VI, P627
[7]   A LOWER BOUND FOR STRUCTURING ELEMENT DECOMPOSITIONS [J].
RICHARDSON, CH ;
SCHAFER, RW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (04) :365-369
[8]   IMAGE ALGEBRA TECHNIQUES FOR PARALLEL IMAGE-PROCESSING [J].
RITTER, GX ;
GADER, PD .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1987, 4 (01) :7-44
[9]   THRESHOLD DECOMPOSITION OF GRAY-SCALE MORPHOLOGY INTO BINARY MORPHOLOGY [J].
SHIH, FYC ;
MITCHELL, OR .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (01) :31-42
[10]   DECOMPOSITION OF CONVEX POLYGONAL MORPHOLOGICAL STRUCTURING ELEMENTS INTO NEIGHBORHOOD SUBSETS [J].
XU, JN .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (02) :153-162