Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain

被引:6747
作者
Fischl, B
Salat, DH
Busa, E
Albert, M
Dieterich, M
Haselgrove, C
van der Kouwe, A
Killiany, R
Kennedy, D
Klaveness, S
Montillo, A
Makris, N
Rosen, B
Dale, AM
机构
[1] Massachusetts Gen Hosp, Nucl Magnet Resonance Ctr, Charlestown, MA 02129 USA
[2] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Neurol, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Dept Psychiat, Boston, MA 02114 USA
[4] Boston Univ, Sch Med, Dept Anat & Neurobiol, Boston, MA 02118 USA
[5] Massachusetts Gen Hosp, Ctr Neurosci, Ctr Morphometr Anal, Charlestown, MA 02129 USA
[6] Univ Penn, Dept Comp Sci, Philadelphia, PA 19104 USA
关键词
D O I
10.1016/S0896-6273(02)00569-X
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease.
引用
收藏
页码:341 / 355
页数:15
相关论文
共 103 条
  • [21] Automatic 3-D model-based neuroanatomical segmentation
    Collins, DL
    Holmes, CJ
    Peters, TM
    Evans, AC
    [J]. HUMAN BRAIN MAPPING, 1995, 3 (03) : 190 - 208
  • [22] Animal: Validation and applications of nonlinear registration-based segmentation
    Collins, DL
    Evans, AC
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 1997, 11 (08) : 1271 - 1294
  • [23] Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease
    Convit, A
    DeLeon, MJ
    Tarshish, C
    DeSanti, S
    Tsui, W
    Rusinek, H
    George, A
    [J]. NEUROBIOLOGY OF AGING, 1997, 18 (02) : 131 - 138
  • [24] Cortical surface-based analysis - I. Segmentation and surface reconstruction
    Dale, AM
    Fischl, B
    Sereno, MI
    [J]. NEUROIMAGE, 1999, 9 (02) : 179 - 194
  • [25] Predicting conversion to Alzheimer disease using standardized clinical information
    Daly, E
    Zaitchik, D
    Copeland, M
    Schmahmann, J
    Gunther, J
    Albert, M
    [J]. ARCHIVES OF NEUROLOGY, 2000, 57 (05) : 675 - 680
  • [26] Using a deformable surface model to obtain a shape representation of the cortex
    Davatzikos, C
    Bryan, RN
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1996, 15 (06) : 785 - 795
  • [27] From healthy aging to early Alzheimer's disease:: In vivo detection of entorhinal cortex atrophy
    De Toledo-Morrell, L
    Goncharova, I
    Dickerson, B
    Wilson, RS
    Bennett, DA
    [J]. PARAHIPPOCAMPAL REGION: IMPLICATIONS FOR NEUROLOGICAL AND PSYCHIATRIC DISEASES, 2000, 911 : 240 - 253
  • [28] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [29] Double KL, 1996, NEUROBIOL AGING, V17, P513
  • [30] YOUNG-ADULT HUMAN BRAIN - AN MRI-BASED MORPHOMETRIC ANALYSIS
    FILIPEK, PA
    RICHELME, C
    KENNEDY, DN
    CAVINESS, VS
    [J]. CEREBRAL CORTEX, 1994, 4 (04) : 344 - 360