Global escape strategies for maximizing quadratic forms over a simplex

被引:14
作者
Bomze, IM [1 ]
机构
[1] UNIV VIENNA,DEPT STAT OPERAT RES & COMP SCI,VIENNA,AUSTRIA
关键词
copositivity; block pivoting; indefinite quadratic programming; maximum clique; independent set;
D O I
10.1023/A:1008297330705
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Consider the problem of maximizing a quadratic form over the standard simplex. Problems of this type occur, e.g., in the search for the maximum (weighted) clique in an undirected graph. In this paper, copositivity-based escape procedures from inefficient local solutions are rephrased into lower-dimensional subproblems which are again of the same type. As a result, an algorithm is obtained which tries to exploit favourable data constellations in a systematic way, and to avoid the worst-case behaviour of such NP-hard problems whenever possible. First results on finding large cliques in DIMACS benchmark graphs are encouraging.
引用
收藏
页码:325 / 338
页数:14
相关论文
共 16 条
[1]  
[Anonymous], CLIQUES COLORING SAT
[2]  
BOMZE IH, 1997, 9702 ISOC TR
[3]   Evolution towards the maximum clique [J].
Bomze, IM .
JOURNAL OF GLOBAL OPTIMIZATION, 1997, 10 (02) :143-164
[4]   Block pivoting and shortcut strategies for detecting copositivity [J].
Bomze, IM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 248 :161-184
[5]   A GLOBAL OPTIMIZATION ALGORITHM FOR CONCAVE QUADRATIC PROGRAMMING PROBLEMS [J].
Bomze, Immanuel M. ;
Danninger, Gabriele .
SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (04) :826-842
[6]   NECESSARY AND SUFFICIENT CONDITIONS FOR QUADRATIC MINIMALITY [J].
BORWEIN, JM .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1982, 5 (02) :127-140
[7]  
CONTESSE L, 1980, NUMER MATH, V34, P315, DOI 10.1007/BF01396705
[8]   USING COPOSITIVITY FOR GLOBAL OPTIMALITY CRITERIA IN CONCAVE QUADRATIC-PROGRAMMING PROBLEMS [J].
DANNINGER, G ;
BOMZE, IM .
MATHEMATICAL PROGRAMMING, 1993, 62 (03) :575-580
[9]  
DHRYMES PJ, 1984, MATH ECONOMETRICS
[10]  
GOMZE IH, 1997, DEV GLOBAL OPTIMIZAT, P95