Tobacco Transgenic for the flax rust resistance gene L expresses allele-specific activation of defense responses

被引:71
作者
Frost, D
Way, H
Howles, P
Luck, J
Manners, J
Hardham, A
Finnegan, J
Ellis, J [1 ]
机构
[1] CSIRO Plant Ind, Cnr Clunies Ross St & Barry Dr, Acton, ACT 2601, Australia
[2] Queensland Biosci Precinct, CSIRO Plant Ind, St Lucia, Qld 4067, Australia
[3] Australian Natl Univ, Res Sch Biol Sci, Canberra, ACT 0200, Australia
关键词
NBS-LRR resistance genes; plant defense;
D O I
10.1094/MPMI.2004.17.2.224
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tobacco was transformed with three different alleles (L2, L6, and L10) of the flax rust resistance gene L, a member of the toll interleukin-1 receptor, nucleotide-binding site, leucine-rich repeat (TIR-NBS-LRR) class of plant disease resistance genes. L6 transgenics had a stunted phenotype, expressed several defense response genes constitutively, and had increased resistance to the fungus Cercospora nicotianae and the oomycete Phytophthora parasitica pv. nicotianae. L2 and L10 transgenics, with one exception for L10, did not express these phenotypes, indicating that the activation of tobacco defense responses is L6 allele-specific. The phenotype of the exceptional L10 transgenic plant was associated with the presence of a truncated L10 gene resulting from an aberrant T-DNA integration. The truncated gene consisted of the promoter, the complete TIR region, and 39 codons of the NBS domain fused in-frame to a tobacco retrotransposon-like sequence. A similar truncated L10 gene, constructed in vitro, was transiently expressed in tobacco leaves and gave rise to a strong localized necrotic reaction. Together, these results suggest that defense signaling properties of resistance genes can be expressed in an allele-specific and pathogen-independent manner when transferred between plant genera.
引用
收藏
页码:224 / 232
页数:9
相关论文
共 30 条
[1]   Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region [J].
Anderson, PA ;
Lawrence, GJ ;
Morrish, BC ;
Ayliffe, MA ;
Finnegan, EJ ;
Ellis, JG .
PLANT CELL, 1997, 9 (04) :641-651
[2]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[3]   Analysis of alternative transcripts of the flax L6 rust resistance gene [J].
Ayliffe, MA ;
Frost, DV ;
Finnegan, EJ ;
Lawrence, GJ ;
Anderson, PA ;
Ellis, JG .
PLANT JOURNAL, 1999, 17 (03) :287-292
[4]   Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato [J].
Bendahmane, A ;
Farnham, G ;
Moffett, P ;
Baulcombe, DC .
PLANT JOURNAL, 2002, 32 (02) :195-204
[5]   Structure-function analysis of the tobacco mosaic virus resistance gene N [J].
Dinesh-Kumar, SP ;
Tham, WH ;
Baker, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14789-14794
[6]   THE OCS ELEMENT - A 16 BASE PAIR PALINDROME ESSENTIAL FOR ACTIVITY OF THE OCTOPINE SYNTHASE ENHANCER [J].
ELLIS, JG ;
LLEWELLYN, DJ ;
WALKER, JC ;
DENNIS, ES ;
PEACOCK, WJ .
EMBO JOURNAL, 1987, 6 (11) :3203-3208
[7]   Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity [J].
Ellis, JG ;
Lawrence, GJ ;
Luck, JE ;
Dodds, PN .
PLANT CELL, 1999, 11 (03) :495-506
[8]   Functional expression of Cf9 and and Avr9 genes in Brassica napus induces enhanced resistance to Leptosphaeria maculans [J].
Hennin, C ;
Höfte, M ;
Diederichsen, E .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (09) :1075-1085
[9]   THE PROMOTER OF TL-DNA GENE 5 CONTROLS THE TISSUE-SPECIFIC EXPRESSION OF CHIMERIC GENES CARRIED BY A NOVEL TYPE OF AGROBACTERIUM BINARY VECTOR [J].
KONCZ, C ;
SCHELL, J .
MOLECULAR & GENERAL GENETICS, 1986, 204 (03) :383-396
[10]   THE L6 GENE FOR FLAX RUST RESISTANCE IS RELATED TO THE ARABIDOPSIS BACTERIAL-RESISTANCE GENE RPS2 AND THE TOBACCO VIRAL RESISTANCE GENE-N [J].
LAWRENCE, GJ ;
FINNEGAN, EJ ;
AYLIFFE, MA ;
ELLIS, JG .
PLANT CELL, 1995, 7 (08) :1195-1206