Passivation oxide controlled selective carbon nanotube growth on metal substrates

被引:25
作者
Bult, J. B. [1 ]
Sawyer, W. G. [2 ]
Ajayan, P. M. [3 ]
Schadler, L. S. [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[2] Univ Florida, Dept Mech Engn, Gainesville, FL 32611 USA
[3] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77251 USA
关键词
IRON; FILMS;
D O I
10.1088/0957-4484/20/8/085302
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Vertically aligned arrays of multi-wall carbon nanotubes (MWNT) are grown on Inconel (TM) 600, a nickel-based super-alloy. Using x-ray photoelectron spectroscopy (XPS) and chemical vapor deposition (CVD) growth of the MWNTs it is shown that a stable oxidation barrier is required for the stabilization of iron on the substrate and subsequent nanotube growth. This evidence for passivation oxide supported growth of MWNTs was then used to grow MWNTs on patterned oxidized substrates in a selective growth furnace. The unique advantage of this patterned growth on Inconel T 600 is found to be the chromia passivation layer's electrical conductivity (measured value of 1.08 mu Omega m), creating the opportunity for low resistivity electrodes made from nanotubes. Inconel substrates with 100 mu m long aligned MWNTs are demonstrated to exhibit an average resistance value of 2 Omega.
引用
收藏
页数:7
相关论文
共 18 条
[1]   Roles of metal-support interaction in growth of single- and double-walled carbon nanotubes studied with diameter-controlled iron particles supported on MgO [J].
Ago, H ;
Nakamura, K ;
Uehara, N ;
Tsuji, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (49) :18908-18915
[2]   ELECTRICAL CONDUCTIVITY OF SINGLE-CRYSTAL CR2O3 [J].
CRAWFORD, JA ;
VEST, RW .
JOURNAL OF APPLIED PHYSICS, 1964, 35 (08) :2413-+
[3]  
Dresselhaus G., 1998, PHYS PROPERTIES CARB
[4]   High power density supercapacitors using locally aligned carbon nanotube electrodes [J].
Du, CS ;
Yeh, J ;
Pan, N .
NANOTECHNOLOGY, 2005, 16 (04) :350-353
[5]   Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].
Fan, SS ;
Chapline, MG ;
Franklin, NR ;
Tombler, TW ;
Cassell, AM ;
Dai, HJ .
SCIENCE, 1999, 283 (5401) :512-514
[6]   Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications [J].
Jung, YJ ;
Kar, S ;
Talapatra, S ;
Soldano, C ;
Viswanathan, G ;
Li, XS ;
Yao, ZL ;
Ou, FS ;
Avadhanula, A ;
Vajtai, R ;
Curran, S ;
Nalamasu, O ;
Ajayan, PM .
NANO LETTERS, 2006, 6 (03) :413-418
[7]   Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns [J].
Jung, YJ ;
Wei, BQ ;
Vajtai, R ;
Ajayan, PM .
NANO LETTERS, 2003, 3 (04) :561-564
[8]   Effects of interfacial layers on thermal chemical vapour deposition of carbon nanotubes using iron catalyst [J].
Liu, C ;
Cheng, AJ ;
Clark, M ;
Tzeng, Y .
DIAMOND AND RELATED MATERIALS, 2005, 14 (3-7) :835-840
[9]   XPS STUDY OF INITIAL GROWTH OF OXIDE-FILMS ON INCONEL-600 ALLOY [J].
MCINTYRE, NS ;
ZETARUK, DG ;
OWEN, D .
APPLICATIONS OF SURFACE SCIENCE, 1978, 2 (01) :55-73
[10]   Synthesis of carbon nanotubes on metallic substrates by a sequential combination of PECVD and thermal CVD [J].
Park, D ;
Kim, YH ;
Lee, JK .
CARBON, 2003, 41 (05) :1025-1029