The human T-type amino acid transporter-1: Characterization, gene organization, and chromosomal location

被引:104
作者
Kim, DK
Kanai, Y
Matsuo, H
Kim, JY
Chairoungdua, A
Kobayashi, Y
Enomoto, A
Cha, SH
Goya, T
Endou, H
机构
[1] Kyorin Univ, Sch Med, Dept Pharmacol & Toxicol, Tokyo 1818611, Japan
[2] Kyorin Univ, Sch Med, Dept Surg 2, Tokyo 1818611, Japan
[3] Natl Def Med Coll, Dept Physiol 1, Tokorozawa, Saitama 3598513, Japan
[4] Nagoya Univ, Sch Med, Dept Clin Prevent Med, Showa Ku, Nagoya, Aichi 4668550, Japan
[5] Japan Sci & Technol Corp, PRESTO, JST, Tokyo 1818611, Japan
基金
日本学术振兴会;
关键词
D O I
10.1006/geno.2001.6678
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
System T is a Na+-independent transport system that selectively transports aromatic amino acids. Here, we determined the structure of the human T-type amino-acid transporter-1 (TAT1) cDNA and gene (SLC16A10). The human TAT1 cDNA encoded a 515-amino-acid protein with 12 putative membrane-spanning domains. Human SLC16A10 was localized on human chromosome 6, mapped to 6q21-q22. SLC16A10 contains six exons spanning 136 kb. In contrast to rat TAT1, which is mainly present in the intestine, human TAT1 was strongly expressed in human kidney as well as in human intestine. Expression of human TAT1 in Xenopus laevis oocytes demonstrated the Na+-independent transport of tryptophan, tyrosine, phenylalanine, and L-dopa, indicating that human TAT1 is a transporter subserving system T. Because human TAT1 is proposed to be crucial to the efficient absorption of aromatic amino acids from intestine and kidney, its defect could be involved in the disruption of aromatic amino-acid transport, such as in blue diaper syndrome.
引用
收藏
页码:95 / 103
页数:9
相关论文
共 31 条
[1]  
BARON DN, 1956, LANCET, V2, P421
[2]   GENETIC-MAPPING BASED ON RADIATION HYBRID DATA [J].
BARRETT, JH .
GENOMICS, 1992, 13 (01) :95-103
[3]   Simplified hot start PCR [J].
Birch, DE ;
Kolmodin, L ;
Laird, WJ ;
McKinney, N ;
Wong, J ;
Young, KKY ;
Zangenberg, GA ;
Zoccoli, MA .
NATURE, 1996, 381 (6581) :445-446
[4]   ROLE OF AMINO-ACID-TRANSPORT AND COUNTERTRANSPORT IN NUTRITION AND METABOLISM [J].
CHRISTENSEN, HN .
PHYSIOLOGICAL REVIEWS, 1990, 70 (01) :43-77
[5]   Cloning and localization of the murine Xpct gene:: Evidence for complex rearrangements during the evolution of the region around the Xist gene [J].
Debrand, E ;
Heard, E ;
Avner, P .
GENOMICS, 1998, 48 (03) :296-303
[6]   BLUE DIAPER SYNDROME - FAMILIAL HYPERCALCEMIA WITH NEPHROCALCINOSIS AND INDICANURIA - NEW FAMILIAL DISEASE WITH DEFINITION OF METABOLIC ABNORMALITY [J].
DRUMMOND, KN ;
MICHAEL, AF ;
ULSTROM, RA ;
GOOD, RA .
AMERICAN JOURNAL OF MEDICINE, 1964, 37 (06) :928-+
[7]   EXPRESSION CLONING OF A MAMMALIAN PROTON-COUPLED OLIGOPEPTIDE TRANSPORTER [J].
FEI, YJ ;
KANAI, Y ;
NUSSBERGER, S ;
GANAPATHY, V ;
LEIBACH, FH ;
ROMERO, MF ;
SINGH, SK ;
BORON, WF ;
HEDIGER, MA .
NATURE, 1994, 368 (6471) :563-566
[8]   The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation [J].
Halestrap, AP ;
Price, NT .
BIOCHEMICAL JOURNAL, 1999, 343 :281-299
[9]   BIOSYNTHESIS OF THE CLONED INTESTINAL NA+ GLUCOSE COTRANSPORTER [J].
HEDIGER, MA ;
MENDLEIN, J ;
LEE, HS ;
WRIGHT, EM .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1064 (02) :360-364
[10]   MODES OF DAPI BANDING AND SIMULTANEOUS INSITU HYBRIDIZATION [J].
HENG, HHQ ;
TSUI, LC .
CHROMOSOMA, 1993, 102 (05) :325-332