Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control

被引:89
作者
Nielsen, KH [1 ]
Szamecz, B [1 ]
Valásek, L [1 ]
Jivotovskaya, A [1 ]
Shin, BS [1 ]
Hinnebusch, AG [1 ]
机构
[1] NICHHD, Lab Gene Regulat & Dev, NIH, Bethesda, MD 20892 USA
关键词
eIF3; GCN4 translational control; multifactor complex (MFC); PRT1; yeast;
D O I
10.1038/sj.emboj.7600116
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The binding of eIF2-GTP-tRNA(i)(Met) ternary complex (TC) to 40S subunits is impaired in yeast prt1-1 (eIF3b) mutant extracts, but evidence is lacking that TC recruitment is a critical function of eIF3 in vivo. If TC binding was rate-limiting in prt1-1 cells, overexpressing TC should suppress the temperature-sensitive phenotype and GCN4 translation should be strongly derepressed in this mutant, but neither was observed. Rather, GCN4 translation is noninducible in prt1-1 cells, and genetic analysis indicates defective ribosomal scanning between the upstream open reading frames that mediate translational control. prt1-1 cells also show reduced utilization of a near-cognate start codon, implicating eIF3 in AUG selection. Using in vivo cross-linking, we observed accumulation of TC and mRNA/eIF4G on 40S subunits and a 48S 'halfmer' in prt1-1 cells. Genetic evidence suggests that 40S-60S subunit joining is not rate-limiting in the prt1-1 mutant. Thus, eIF3b functions between 48S assembly and subunit joining to influence AUG recognition and reinitiation on GCN4 mRNA. Other mutations that disrupt eIF2-eIF3 contacts in the multifactor complex (MFC) diminished 40S-bound TC, indicating that MFC formation enhances 43S assembly in vivo.
引用
收藏
页码:1166 / 1177
页数:12
相关论文
共 35 条
[1]   SUPPRESSION OF RIBOSOMAL REINITIATION AT UPSTREAM OPEN READING FRAMES IN AMINO ACID-STARVED CELLS FORMS THE BASIS FOR GCN4 TRANSLATIONAL CONTROL [J].
ABASTADO, JP ;
MILLER, PF ;
JACKSON, BM ;
HINNEBUSCH, AG .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (01) :486-496
[2]   Development and characterization of a reconstituted yeast translation initiation system [J].
Algire, MA ;
Maag, D ;
Savio, P ;
Acker, MG ;
Tarun, SZ ;
Sachs, AB ;
Asano, K ;
Nielsen, KH ;
Olsen, DS ;
Phan, L ;
Hinnebusch, AG ;
Lorsch, JR .
RNA, 2002, 8 (03) :382-397
[3]   Functional interactions between yeast translation eukaryotic elongation factor (eEF) 1A and eEF3 [J].
Anand, M ;
Chakraburtty, K ;
Marton, MJ ;
Hinnebusch, AG ;
Kinzy, TG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (09) :6985-6991
[4]   A multifactor complex of eukaryotic initiation factors, eIE1, eIF2, eIF3, eIF5, and initiator tRNAMet is an important translation initiation intermediate in vivo [J].
Asano, K ;
Clayton, J ;
Shalev, A ;
Hinnebusch, AG .
GENES & DEVELOPMENT, 2000, 14 (19) :2534-2546
[5]   Conserved bipartite motifs in yeast eIF5 and eIF2Bε, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2 [J].
Asano, K ;
Krishnamoorthy, T ;
Phan, L ;
Pavitt, GD ;
Hinnebusch, AG .
EMBO JOURNAL, 1999, 18 (06) :1673-1688
[6]   Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation [J].
Asano, K ;
Shalev, A ;
Phan, L ;
Nielsen, K ;
Clayton, J ;
Valásek, L ;
Donahue, TF ;
Hinnebusch, AG .
EMBO JOURNAL, 2001, 20 (09) :2326-2337
[7]   Promotion of Met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast [J].
Choi, SK ;
Lee, JH ;
Zoll, WL ;
Merrick, WC ;
Dever, TE .
SCIENCE, 1998, 280 (5370) :1757-1760
[8]   COMPLEX-FORMATION BY POSITIVE AND NEGATIVE TRANSLATIONAL REGULATORS OF GCN4 [J].
CIGAN, AM ;
FOIANI, M ;
HANNIG, EM ;
HINNEBUSCH, AG .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (06) :3217-3228
[9]   ISOLATION OF A PROTEIN COMPLEX CONTAINING TRANSLATION INITIATION-FACTOR PRT1 FROM SACCHAROMYCES-CEREVISIAE [J].
DANAIE, P ;
WITTMER, B ;
ALTMANN, M ;
TRACHSEL, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (09) :4288-4292
[10]  
DEVER TE, 1995, MOL CELL BIOL, V15, P6351