Surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methyl methacrylate from a mixed self-assembled monolayer on gold

被引:213
作者
Ma, HW
Wells, M
Beebe, TP
Chilkoti, A
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA
[3] IonTof USA Inc, Chestnut Ridge, NY 10977 USA
关键词
D O I
10.1002/adfm.200500426
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper describes the in-situ synthesis of an oligo(ethylene glycol)-functionalized polymer brush in which the oligo(ethylene glycol) chains are presented as side-chains from a methacrylate backbone that is anchored to the surface. These polymer "bottle-brushes" have been synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP) of oligo(ethylene glycol) methyl methacrylate (OEGMA) from a mixed self-assembled monolayer (SAM) of an ATRP initiator-functionalized alkanethiol and a diluent, methyl-terminated thiol. The systematic control of the ATRP initiator surface density afforded by the mixed SAM on gold and the polymerization time enables the polymer chain length and surface density to be independently controlled. Surface plasmon resonance (SPR) spectroscopy of fibronectin (Fn) adsorption on poly(OEGMA) grown from the surface of the mixed SAMs on gold shows that above a threshold solution molar ratio of the ATRP-initiator thiol to methyl-terminated thiol of 0.2, and a dry film thickness of similar to 4 nm, Fn adsorption on the surface-initiated poly(OEGMA) coatings was below the detection limit of SPR. The relatively low surface density of the ATRP initiator required to confer protein resistance to the surface suggests that SI-ATRP may be a viable strategy to create protein resistant polymer brushes on real-world materials.
引用
收藏
页码:640 / 648
页数:9
相关论文
共 59 条
[1]   MODELING ORGANIC-SURFACES WITH SELF-ASSEMBLED MONOLAYERS [J].
BAIN, CD ;
WHITESIDES, GM .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1989, 28 (04) :506-512
[2]   Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions [J].
Bearinger, JP ;
Terrettaz, S ;
Michel, R ;
Tirelli, N ;
Vogel, H ;
Textor, M ;
Hubbell, JA .
NATURE MATERIALS, 2003, 2 (04) :259-264
[3]  
Briggs D., 1998, CAMBRIDGE SOLID STAT
[4]   Surface-initiated polymerization of L-lactide: Coating of solid substrates with a biodegradable polymer [J].
Choi, IS ;
Langer, R .
MACROMOLECULES, 2001, 34 (16) :5361-5363
[5]   Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties [J].
Currie, EPK ;
Norde, W ;
Stuart, MAC .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2003, 100 :205-265
[6]   Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces [J].
Dalsin, JL ;
Hu, BH ;
Lee, BP ;
Messersmith, PB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (14) :4253-4258
[7]   Polymer brushes via surface-initiated polymerizations [J].
Edmondson, S ;
Osborne, VL ;
Huck, WTS .
CHEMICAL SOCIETY REVIEWS, 2004, 33 (01) :14-22
[8]   Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the Langmuir-Blodgett and atom transfer radical polymerization techniques [J].
Ejaz, M ;
Yamamoto, S ;
Ohno, K ;
Tsujii, Y ;
Fukuda, T .
MACROMOLECULES, 1998, 31 (17) :5934-5936
[9]  
Elbert DL, 1998, J BIOMED MATER RES, V42, P55, DOI 10.1002/(SICI)1097-4636(199810)42:1<55::AID-JBM8>3.0.CO
[10]  
2-N