Distinct Mutational Behaviors Differentiate Short Tandem Repeats from Microsatellites in the Human Genome

被引:40
作者
Ananda, Guruprasad [1 ,2 ]
Walsh, Erin [2 ,3 ,4 ]
Jacob, Kimberly D. [4 ]
Krasilnikova, Maria [2 ,5 ]
Eckert, Kristin A. [2 ,4 ]
Chiaromonte, Francesca [1 ,2 ,6 ]
Makova, Kateryna D. [1 ,2 ,7 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
[2] Penn State Univ, Huck Inst Life Sci, Ctr Med Genom, University Pk, PA 16802 USA
[3] Penn State Univ, Cellular & Mol Biol Grad Program, University Pk, PA 16802 USA
[4] Penn State Univ, Coll Med, Jake Gittlen Canc Res Fdn, Dept Pathol, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
[6] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[7] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
来源
GENOME BIOLOGY AND EVOLUTION | 2013年 / 5卷 / 03期
关键词
tandem repeats; short tandem repeats; microsatellites; replication slippage; segmented regression; change point; DNA-SEQUENCES; SACCHAROMYCES-CEREVISIAE; REPETITIVE DNA; HOT-SPOTS; RECOMBINATION; REPLICATION; EVOLUTION; POLYMORPHISM; MUTAGENESIS; MISALIGNMENT;
D O I
10.1093/gbe/evs116
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A tandem repeat's (TR) propensity to mutate increases with repeat number, and can become very pronounced beyond a critical boundary, transforming it into a microsatellite (MS). However, a clear understanding of the mutational behavior of different TR classes and motifs and related mechanisms is lacking, as is a consensus on the existence of a boundary separating short TRs (STRs) from MSs. This hinders our understanding of MSs' mutational properties and their effective use as genetic markers. Using indel calls for 179 individuals from 1000 Genomes Pilot-1 Project, we determined polymorphism incidence for four major TR classes, and formalized its varying relationship with repeat number using segmented regression. We observed a biphasic regime with a transition from a faster to a slower exponential growth at 9, 5, 4, and 4 repeats for mono-, di-, tri-, and tetranucleotide TRs, respectively. We used an in vitro mutagenesis assay to evaluate the contribution of strand slippage errors to mutability. STRs and MSs differ in their absolute polymorphism levels, but more importantly in their rates of mutability growth. Although strand slippage is a major factor driving mononucleotide polymorphism incidence, dinucleotide polymorphism incidence is greater than that expected due to strand slippage alone, indicating that additional cellular factors might be driving dinucleotide mutability in the human genome. Leveraging on hundreds of human genomes, we present the first comprehensive, genome-wide analysis of TR mutational behavior, encompassing several motif sizes and compositions.
引用
收藏
页码:606 / 620
页数:15
相关论文
共 75 条
[41]   Fine-scale recombination rate differences between sexes, populations and individuals [J].
Kong, Augustine ;
Thorleifsson, Gudmar ;
Gudbjartsson, Daniel F. ;
Masson, Gisli ;
Sigurdsson, Asgeir ;
Jonasdottir, Aslaug ;
Walters, G. Bragi ;
Jonasdottir, Adalbjorg ;
Gylfason, Arnaldur ;
Kristinsson, Kari Th. ;
Gudjonsson, Sigurjon A. ;
Frigge, Michael L. ;
Helgason, Agnar ;
Thorsteinsdottir, Unnur ;
Stefansson, Kari .
NATURE, 2010, 467 (7319) :1099-1103
[42]   Exonucleolytic proofreading during replication of repetitive DNA [J].
Kroutil, LC ;
Register, K ;
Bebenek, K ;
Kunkel, TA .
BIOCHEMISTRY, 1996, 35 (03) :1046-1053
[43]   MISALIGNMENT-MEDIATED DNA-SYNTHESIS ERRORS [J].
KUNKEL, TA .
BIOCHEMISTRY, 1990, 29 (35) :8003-8011
[44]   The relationship between microsatellite slippage mutation rate and the number of repeat units [J].
Lai, YL ;
Sun, FZ .
MOLECULAR BIOLOGY AND EVOLUTION, 2003, 20 (12) :2123-2131
[45]   Initial sequencing and analysis of the human genome [J].
Lander, ES ;
Int Human Genome Sequencing Consortium ;
Linton, LM ;
Birren, B ;
Nusbaum, C ;
Zody, MC ;
Baldwin, J ;
Devon, K ;
Dewar, K ;
Doyle, M ;
FitzHugh, W ;
Funke, R ;
Gage, D ;
Harris, K ;
Heaford, A ;
Howland, J ;
Kann, L ;
Lehoczky, J ;
LeVine, R ;
McEwan, P ;
McKernan, K ;
Meldrim, J ;
Mesirov, JP ;
Miranda, C ;
Morris, W ;
Naylor, J ;
Raymond, C ;
Rosetti, M ;
Santos, R ;
Sheridan, A ;
Sougnez, C ;
Stange-Thomann, N ;
Stojanovic, N ;
Subramanian, A ;
Wyman, D ;
Rogers, J ;
Sulston, J ;
Ainscough, R ;
Beck, S ;
Bentley, D ;
Burton, J ;
Clee, C ;
Carter, N ;
Coulson, A ;
Deadman, R ;
Deloukas, P ;
Dunham, A ;
Dunham, I ;
Durbin, R ;
French, L .
NATURE, 2001, 409 (6822) :860-921
[46]   DNA Slippage Occurs at Microsatellite Loci without Minimal Threshold Length in Humans: A Comparative Genomic Approach [J].
Leclercq, Sebastien ;
Rivals, Eric ;
Jarne, Philippe .
GENOME BIOLOGY AND EVOLUTION, 2010, 2 :325-335
[47]   Sequence-based estimation of minisatellite and microsatellite repeat variability [J].
Legendre, Matthieu ;
Pochet, Nathalie ;
Pak, Theodore ;
Verstrepen, Kevin J. .
GENOME RESEARCH, 2007, 17 (12) :1787-1796
[48]   Frameshift Mutagenesis: The Roles of Primer-Template Misalignment and the Nonhomologous End-Joining Pathway in Saccharomyces cerevisiae [J].
Lehner, Kevin ;
Mudrak, Sarah V. ;
Minesinger, Brenda K. ;
Jinks-Robertson, Sue .
GENETICS, 2012, 190 (02) :501-510
[49]  
LEVINSON G, 1987, MOL BIOL EVOL, V4, P203
[50]   Microsatellites within genes: Structure, function, and evolution [J].
Li, YC ;
Korol, AB ;
Fahima, T ;
Nevo, E .
MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (06) :991-1007