Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification

被引:246
作者
Zafeiriou, Stefanos [1 ]
Tefas, Anastasios [1 ]
Buciu, Ioan [1 ]
Pitas, Ioannis [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, GR-54006 Thessaloniki, Greece
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2006年 / 17卷 / 03期
关键词
frontal face verification; linear discriminant analysis (LDA); nonnegative matrix factorization (NMF); subspace techniques;
D O I
10.1109/TNN.2006.873291
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, two supervised methods for enhancing the classification accuracy of the Nonnegative Matrix Factorization (NMF) algorithm are presented. The idea is to extend the NMF algorithm in order to extract features that enforce not only the spatial locality, but also the separability between classes in a discriminant manner. The first method employs discriminant analysis in the features derived from WE In this way, a two-phase discriminant feature extraction procedure is implemented, namely NMF plus Linear Discriminant Analysis (LDA). The second method incorporates the discriminant constraints inside the NMF decomposition. Thus, a decomposition of a face to its discriminant parts is obtained and new update rules for both the weights and the basis images are derived. The introduced methods have been applied to the problem of frontal face verification using the well-known XM2VTS database. Both methods greatly enhance the performance of NMF for frontal face verification.
引用
收藏
页码:683 / 695
页数:13
相关论文
共 41 条
[41]   Foley-Sammon optimal discriminant vectors using kernel approach [J].
Zheng, WM ;
Zhao, L ;
Zou, CR .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (01) :1-9