Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers

被引:39
作者
Xu, Ying
Hu, Zhihua
Diao, Hongwei
Cai, Yi
Zhang, Shibin
Zeng, Xiangbo
Hao, Huiying
Liao, Xianbo
Fortunato, Elvira
Martins, Rodrigo
机构
[1] Univ Nova Lisboa, Dept Mat Sci, P-2829516 Caparica, Almada, Portugal
[2] Univ Nova Lisboa, CEMOP, P-2829516 Caparica, Almada, Portugal
[3] Univ Nova Lisboa, Fac Sci & Technol, P-2829516 Caparica, Portugal
[4] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
[5] Kunming Inst Phys, Kunming, Yunnan, Peoples R China
关键词
silicon; solar cells; heterojunctions; nanocrystals;
D O I
10.1016/j.jnoncrysol.2006.02.028
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hydrogenated nanocrystalline silicon (nc-Si:H) n-layers have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) wafers. The nc-Si:H n-layers were deposited by radio-frequency (RF) plasma enhanced chemical vapor deposition (PECVD), and characterized using Raman spectroscopy, optical transmittance and activation energy of dark-conductivity. The nc-Si:H n-layers obtained comprise fine grained nanocrystallites embedded in amorphous matrix, which have a wider bandgap and a smaller activation energy. Heterojunction solar cells incorporated with the nc-Si n-layer were fabricated using configuration of Ag (100 nm)/1T0 (80 nm)/n-nc-Si:H (15 nm)/buffer a-Si:H/p-c-Si (300 mu m)/Al (200 nm), where a very thin intrinsic a-Si:H buffer layer was used to passivate the p-c-Si surface, followed by a hydrogen plasma treatment prior to the deposition of the thin nanocrystalline layer. The results show that heterojunction solar cells subjected to these surface treatments exhibit a remarkable increase in the efficiency, up to 14.1% on an area of 2.43 cm(2). (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1972 / 1975
页数:4
相关论文
共 18 条
[1]   Influence of interface treatments on the performance of silicon heterojunction solar cells [J].
Cárabe, J ;
Gandía, JJ .
THIN SOLID FILMS, 2002, 403 :238-241
[2]   Very low surface recombination velocities on p- and n-type silicon wafers passivated with hydrogenated amorphous silicon films [J].
Dauwe, S ;
Schmidt, J ;
Hezel, R .
CONFERENCE RECORD OF THE TWENTY-NINTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE 2002, 2002, :1246-1249
[3]   THEORETICAL DESCRIPTIONS OF POROUS SILICON [J].
DELERUE, C ;
LANNOO, M ;
ALLAN, G ;
MARTIN, E .
THIN SOLID FILMS, 1995, 255 (1-2) :27-34
[4]   QUANTUM CONFINEMENT IN SI NANOCRYSTALS [J].
DELLEY, B ;
STEIGMEIER, EF .
PHYSICAL REVIEW B, 1993, 47 (03) :1397-1400
[5]   Heterojunctions for polycrystalline silicon solar cells [J].
Hausner, RM ;
Jensen, N ;
Bergmann, RB ;
Rau, U ;
Werner, JH .
SOLID STATE PHENOMENA, 1999, 67-8 :571-576
[6]   Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells [J].
Jensen, N ;
Hausner, RA ;
Bergmann, RB ;
Werner, JH ;
Rau, U .
PROGRESS IN PHOTOVOLTAICS, 2002, 10 (01) :1-13
[7]   Maximization of the open circuit voltage for hydrogenated amorphous silicon n-i-p solar cells by incorporation of protocrystalline silicon p-type layers [J].
Koval, RJ ;
Chen, C ;
Ferreira, GM ;
Ferlauto, AS ;
Pearce, JM ;
Rovira, PI ;
Wronski, CR ;
Collins, RW .
APPLIED PHYSICS LETTERS, 2002, 81 (07) :1258-1260
[8]  
SAWADA T, 1994, IEEE PHOT SPEC CONF, P1219, DOI 10.1109/WCPEC.1994.519952
[9]   Influence of atomic hydrogen on the growth kinetics of a-Si:H films and on the properties of silicon substrates [J].
Seitz, H ;
Bauer, S ;
Dusane, RO ;
Schröder, B .
THIN SOLID FILMS, 2001, 395 (1-2) :116-120
[10]   Amorphous silicon/p-type crystalline silicon heterojunction solar cells with a microcrystalline silicon buffer layer [J].
Song, YJ ;
Anderson, WA .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2000, 64 (03) :241-249