Activators of peroxisome proliferator-activated receptor-α induce the expression of the uncoupling protein-3 gene in skeletal muscle -: A potential mechanism for the lipid intake-dependent activation of uncoupling protein-3 gene expression at birth

被引:133
作者
Brun, S [1 ]
Carmona, MC [1 ]
Mampel, T [1 ]
Viñas, O [1 ]
Giralt, M [1 ]
Iglesias, R [1 ]
Villarroya, F [1 ]
机构
[1] Univ Barcelona, Dept Biochem & Mol Biol, Barcelona 08028, Spain
关键词
D O I
10.2337/diabetes.48.6.1217
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The recently identified uncoupling protein-3 (UCP-3) gene, predicted to encode a new member of the family of uncoupling proteins, is preferentially expressed in skeletal muscle and has been related to phenotypes of obesity and type 2 diabetes. We have established that during mouse ontogeny, the expression of the UCP-3 gene is switched on in skeletal muscle just after birth. The induction of UCP-3 gene expression is dependent on the initiation of suckling and particularly on lipid intake. Treatment of newborn mice with activators of peroxisome proliferator-activated receptors (PPARs), such as clofibrate, bezafibrate, or (4-chloro-6-(2,3-xylidine)-pirimidinylthio)acetic acid (WY 14,643), mimics the action of food intake on UCP-3 gene expression. The specific ligand of PPAR-alpha WY 14,643 induces UCP-3 gene expression in a time- and dose-dependent manner, whereas the thiazolidinedione BRL 49653, specific for PPAR-gamma, has no effect. These treatments act without altering circulating free fatty acids. During development, skeletal muscle expresses constitutive levels of PPAR-delta mRNA, whereas expression of the PPAR-gamma gene is undetectable. PPAR-gamma gene expression is developmentally regulated in muscle as it is first expressed at birth, just before UCP-3 gene induction occurs. The induction of UCP-3 gene expression by WY 14,643 is impaired in skeletal muscle of premature neonates, which do not express PPAR-a. It is proposed that the UCP-3 gene is predominantly regulated in neonatal muscle by PPAR-alpha activation.
引用
收藏
页码:1217 / 1222
页数:6
相关论文
共 32 条
[1]   Up-regulation of UCP-2 gene expression by PPAR agonists in preadipose and adipose cells [J].
Aubert, J ;
Champigny, O ;
SaintMarc, P ;
Negrel, R ;
Collins, S ;
Ricquier, D ;
Ailhaud, G .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 238 (02) :606-611
[2]   Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression [J].
Boss, O ;
Samec, S ;
PaoloniGiacobino, A ;
Rossier, C ;
Dulloo, A ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FEBS LETTERS, 1997, 408 (01) :39-42
[3]   Uncoupling protein-3 expression in rodent skeletal muscle is modulated by food intake but not by changes in environmental temperature [J].
Boss, O ;
Samec, S ;
Kühne, F ;
Bijlenga, P ;
Assimacopoulos-Jeannet, F ;
Seydoux, J ;
Giacobino, JP ;
Muzzin, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) :5-8
[4]   Differential expression of peroxisome proliferator-activated receptor-α, -β, and -γ during rat embryonic development [J].
Braissant, O ;
Wahli, W .
ENDOCRINOLOGY, 1998, 139 (06) :2748-2754
[5]   Differential regulation of uncoupling protein-2 and uncoupling protein-3 gene expression in brown adipose tissue during development and cold exposure [J].
Carmona, MC ;
Valmaseda, A ;
Brun, S ;
Viñas, O ;
Mampel, T ;
Iglesias, R ;
Giralt, M ;
Villarroya, F .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 243 (01) :224-228
[6]  
CARROLL JE, 1983, BIOL NEONATE, V43, P191
[7]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[8]   Leptin gene is expressed in rat brown adipose tissue at birth [J].
Dessolin, S ;
Schalling, M ;
Champigny, O ;
Lonnqvist, F ;
Ailhaud, G ;
Dani, C ;
Ricquier, D .
FASEB JOURNAL, 1997, 11 (05) :382-387
[9]   The PPAR alpha-leukotriene B-4 pathway to inflammation control [J].
Devchand, PR ;
Keller, H ;
Peters, JM ;
Vazquez, M ;
Gonzalez, FJ ;
Wahli, W .
NATURE, 1996, 384 (6604) :39-43
[10]   REDUCTION OF BACKGROUND PROBLEMS IN NONRADIOACTIVE NORTHERN AND SOUTHERN BLOT ANALYSES ENABLES HIGHER SENSITIVITY THAN P-32 BASED HYBRIDIZATIONS [J].
ENGLERBLUM, G ;
MEIER, M ;
FRANK, J ;
MULLER, GA .
ANALYTICAL BIOCHEMISTRY, 1993, 210 (02) :235-244