Integrated Weighted Gene Co-expression Network Analysis with an Application to Chronic Fatigue Syndrome

被引:138
作者
Presson, Angela P. [1 ]
Sobel, Eric M. [1 ]
Papp, Jeanette C. [1 ]
Suarez, Charlyn J. [1 ]
Whistler, Toni [2 ]
Rajeevan, Mangalathu S. [2 ]
Vernon, Suzanne D. [2 ,3 ]
Horvath, Steve [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
[2] Ctr Dis Control & Prevent, Div Viral & Rickettsial Dis, Natl Ctr Zoonot Vector Borne & Enter Dis, Atlanta, GA USA
[3] CFIDS, Charlotte, NC USA
关键词
MENDELIAN RANDOMIZATION; HPA AXIS; EXPRESSION; POLYMORPHISMS; ENCEPHALOMYOPATHY; IMMUNODEFICIENCY; IDENTIFICATION; PREVALENCE; ALOPECIA; MUTATION;
D O I
10.1186/1752-0509-2-95
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Systems biologic approaches such as Weighted Gene Co-expression Network Analysis (WGCNA) can effectively integrate gene expression and trait data to identify pathways and candidate biomarkers. Here we show that the additional inclusion of genetic marker data allows one to characterize network relationships as causal or reactive in a chronic fatigue syndrome (CFS) data set. Results: We combine WGCNA with genetic marker data to identify a disease-related pathway and its causal drivers, an analysis which we refer to as "Integrated WGCNA" or IWGCNA. Specifically, we present the following IWGCNA approach: 1) construct a co-expression network, 2) identify trait-related modules within the network, 3) use a trait-related genetic marker to prioritize genes within the module, 4) apply an integrated gene screening strategy to identify candidate genes and 5) carry out causality testing to verify and/or prioritize results. By applying this strategy to a CFS data set consisting of microarray, SNP and clinical trait data, we identify a module of 299 highly correlated genes that is associated with CFS severity. Our integrated gene screening strategy results in 20 candidate genes. We show that our approach yields biologically interesting genes that function in the same pathway and are causal drivers for their parent module. We use a separate data set to replicate findings and use Ingenuity Pathways Analysis software to functionally annotate the candidate gene pathways. Conclusion: We show how WGCNA can be combined with genetic marker data to identify disease-related pathways and the causal drivers within them. The systems genetics approach described here can easily be used to generate testable genetic hypotheses in other complex disease studies.
引用
收藏
页数:21
相关论文
共 72 条
  • [11] Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion
    Elpeleg, O
    Miller, C
    Hershkovitz, E
    Bitner-Glindzicz, M
    Bondi-Rubenstein, G
    Rahman, S
    Pagnamenta, A
    Eshhar, S
    Saada, A
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2005, 76 (06) : 1081 - 1086
  • [12] Genetics of gene expression and its effect on disease
    Emilsson, Valur
    Thorleifsson, Gudmar
    Zhang, Bin
    Leonardson, Amy S.
    Zink, Florian
    Zhu, Jun
    Carlson, Sonia
    Helgason, Agnar
    Walters, G. Bragi
    Gunnarsdottir, Steinunn
    Mouy, Magali
    Steinthorsdottir, Valgerdur
    Eiriksdottir, Gudrun H.
    Bjornsdottir, Gyda
    Reynisdottir, Inga
    Gudbjartsson, Daniel
    Helgadottir, Anna
    Jonasdottir, Aslaug
    Jonasdottir, Adalbjorg
    Styrkarsdottir, Unnur
    Gretarsdottir, Solveig
    Magnusson, Kristinn P.
    Stefansson, Hreinn
    Fossdal, Ragnheidur
    Kristjansson, Kristleifur
    Gislason, Hjortur G.
    Stefansson, Tryggvi
    Leifsson, Bjorn G.
    Thorsteinsdottir, Unnur
    Lamb, John R.
    Gulcher, Jeffrey R.
    Reitman, Marc L.
    Kong, Augustine
    Schadt, Eric E.
    Stefansson, Kari
    [J]. NATURE, 2008, 452 (7186) : 423 - U2
  • [13] Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling
    Ferrara, Christine T.
    Wang, Ping
    Neto, Elias Chaibub
    Stevens, Robert D.
    Bain, James R.
    Wenner, Brett R.
    Ilkayeva, Olga R.
    Keller, Mark P.
    Blasiole, Daniel A.
    Kendziorski, Christina
    Yandell, Brian S.
    Newgard, Christopher B.
    Attie, Alan D.
    [J]. PLOS GENETICS, 2008, 4 (03):
  • [14] NUDE A NEW HAIRLESS GENE WITH PLEIOTROPIC EFFECTS IN MOUSE
    FLANAGAN, SP
    [J]. GENETICAL RESEARCH, 1966, 8 (03) : 295 - &
  • [15] SET OF MEASURES OF CENTRALITY BASED ON BETWEENNESS
    FREEMAN, LC
    [J]. SOCIOMETRY, 1977, 40 (01): : 35 - 41
  • [16] THE CHRONIC FATIGUE SYNDROME - A COMPREHENSIVE APPROACH TO ITS DEFINITION AND STUDY
    FUKUDA, K
    STRAUS, SE
    HICKIE, I
    SHARPE, MC
    DOBBINS, JG
    KOMAROFF, A
    SCHLUEDERBERG, A
    JONES, JF
    LLOYD, AR
    WESSELY, S
    GANTZ, NM
    HOLMES, GP
    BUCHWALD, D
    ABBEY, S
    REST, J
    LEVY, JA
    JOLSON, H
    PETERSON, DL
    VERCOULEN, JHMM
    TIRELLI, U
    EVENGARD, B
    NATELSON, BH
    STEELE, L
    REYES, M
    REEVES, WC
    [J]. ANNALS OF INTERNAL MEDICINE, 1994, 121 (12) : 953 - 959
  • [17] Weighted gene coexpression network analysis strategies applied to mouse weight
    Fuller, Tova F.
    Ghazalpour, Anatole
    Aten, Jason E.
    Drake, Thomas A.
    Lusis, Aldons J.
    Horvath, Steve
    [J]. MAMMALIAN GENOME, 2007, 18 (6-7) : 463 - 472
  • [18] Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids
    Gargalovic, Peter S.
    Imura, Minori
    Zhang, Bin
    Gharavi, Nima M.
    Clark, Michael J.
    Pagnon, Joanne
    Yang, Wen-Pin
    He, Aiqing
    Truong, Amy
    Patel, Shilpa
    Nelson, Stanley F.
    Horvath, Steve
    Berliner, Judith A.
    Kirchgessner, Todd G.
    Lusis, Aldons J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (34) : 12741 - 12746
  • [19] Integrating genetic and network analysis to characterize genes related to mouse weight
    Ghazalpour, Anatole
    Doss, Sudheer
    Zhang, Bin
    Wang, Susanna
    Plaisier, Christopher
    Castellanos, Ruth
    Brozell, Alec
    Schadt, Eric E.
    Drake, Thomas A.
    Lusis, Aldons J.
    Horvath, Steve
    [J]. PLOS GENETICS, 2006, 2 (08): : 1182 - 1192
  • [20] Combinations of single nucleotide polymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue syndrome
    Goertzel, BN
    Pennachin, C
    Coelho, LD
    Gurbaxani, B
    Maloney, EM
    Jones, JF
    [J]. PHARMACOGENOMICS, 2006, 7 (03) : 475 - 483