Ionic liquids in the electrochemical valorisation of CO2

被引:171
作者
Alvarez-Guerra, Manuel [1 ]
Albo, Jonathan [2 ]
Alvarez-Guerra, Enrique [1 ]
Irabien, Angel [1 ]
机构
[1] Univ Cantabria, Dept Chem & Biomol Engn, ETSIIT, E-39005 Santander, Spain
[2] Univ Basque Country UPV EHU, Dept Chem Engn, Bilbao 48080, Spain
关键词
SELECTIVE ELECTROCATALYTIC REDUCTION; N-HETEROCYCLIC CARBENE; OF-THE-ART; CARBON-DIOXIDE; DIMETHYL CARBONATE; CYCLIC CARBONATES; CAPTURE; CONVERSION; ACTIVATION; ELECTRODE;
D O I
10.1039/c5ee01486g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of electrochemical processes for using captured CO2 in the production of valuable compounds appears as an attractive alternative to recycle CO2 and, at the same time, to store electricity from intermittent renewable sources. Among the different innovative attempts that are being investigated to improve these processes, the application of ionic liquids (ILs) has received growing attention in recent years. This paper presents a unified discussion of the significant work that involves the utilisation of ILs for the valorisation of CO2 by means of electrochemical routes. We discuss studies in which CO2 is used as one of the reactants to electrosynthesise value-added products, among which dimethyl carbonate has been the focus of particular attention in the literature. Approaches based on the electrochemical reduction of CO2 to convert it into products without the use of other carbon-based reactants are also reviewed, highlighting the remarkable improvements that the use of ILs has allowed in the CO2 electroreduction to CO. The review emphasises on different aspects related to process design, including the nature of IL anions and cations that have been used, the working conditions, the electrocatalytic materials, the electrode configurations, or the design of electrochemical cells, as well as discussing the most relevant observations, results and figures of merit that the participation of ILs has allowed to achieve in these processes. Several conclusions are finally proposed to highlight crucial challenges and recommendations for future research in this area.
引用
收藏
页码:2574 / 2599
页数:26
相关论文
共 135 条
[1]   Towards the electrochemical conversion of carbon dioxide into methanol [J].
Albo, J. ;
Alvarez-Guerra, M. ;
Castano, P. ;
Irabien, A. .
GREEN CHEMISTRY, 2015, 17 (04) :2304-2324
[2]   Porous Al2O3/TiO2 tubes in combination with 1-ethyl-3-methylimidazolium acetate ionic liquid for CO2/N2 separation [J].
Albo, Jonathan ;
Yoshioka, Tomohisa ;
Tsuru, Toshinori .
SEPARATION AND PURIFICATION TECHNOLOGY, 2014, 122 :440-448
[3]   Absorption of coal combustion flue gases in ionic liquids using different membrane contactors [J].
Albo, Jonathan ;
Luis, Patricia ;
Irabien, Angel .
DESALINATION AND WATER TREATMENT, 2011, 27 (1-3) :54-59
[4]   Carbon Dioxide Capture from Flue Gases Using a Cross-Flow Membrane Contactor and the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethylsulfate [J].
Albo, Jonathan ;
Luis, Patricia ;
Irabien, Angel .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (21) :11045-11051
[5]   Design of ionic liquids: an ecotoxicity (Vibrio fischeri) discrimination approach [J].
Alvarez-Guerra, Manuel ;
Irabien, Angel .
GREEN CHEMISTRY, 2011, 13 (06) :1507-1516
[6]  
[Anonymous], 2011, HARN VAR REN GUID BA
[7]  
[Anonymous], Key World Energy Statistics 2014
[8]  
[Anonymous], 2010, Energy Technology Perspectives 2010
[9]  
[Anonymous], 2012, ENERGY TECHNOLOGY PE
[10]   Catalysis research of relevance to carbon management: Progress, challenges, and opportunities [J].
Arakawa, H ;
Aresta, M ;
Armor, JN ;
Barteau, MA ;
Beckman, EJ ;
Bell, AT ;
Bercaw, JE ;
Creutz, C ;
Dinjus, E ;
Dixon, DA ;
Domen, K ;
DuBois, DL ;
Eckert, J ;
Fujita, E ;
Gibson, DH ;
Goddard, WA ;
Goodman, DW ;
Keller, J ;
Kubas, GJ ;
Kung, HH ;
Lyons, JE ;
Manzer, LE ;
Marks, TJ ;
Morokuma, K ;
Nicholas, KM ;
Periana, R ;
Que, L ;
Rostrup-Nielson, J ;
Sachtler, WMH ;
Schmidt, LD ;
Sen, A ;
Somorjai, GA ;
Stair, PC ;
Stults, BR ;
Tumas, W .
CHEMICAL REVIEWS, 2001, 101 (04) :953-996