Principles of flexible protein-protein docking

被引:172
作者
Andrusier, Nelly [1 ]
Mashiach, Efrat [1 ]
Nussinov, Ruth [2 ,3 ]
Wolfson, Haim J. [1 ]
机构
[1] Tel Aviv Univ, Sch Comp Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
[2] SAIC Frederick Inc, Basic Res Program, Ctr Canc Res Nanobiol Program NCI Frederick, Frederick, MD 21702 USA
[3] Tel Aviv Univ, Sackler Fac Med, Dept Human Genet & Mol Med, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会; 美国国家卫生研究院;
关键词
flexible docking; backbone flexibility; side-chain refinement; rigid-body optimization; modeling protein-protein docking;
D O I
10.1002/prot.22170
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Treating flexibility in molecular docking is a major challenge in cell biology research. Here we describe the background and the principles of existing flexible protein-protein docking methods, focusing on the algorithms and their rational. We describe how protein flexibility is treated in different stages of the docking process: in the preprocessing stage, rigid and flexible parts are identified and their possible conformations are modeled. This preprocessing provides information for the subsequent docking and refinement stages. In the docking stage, an ensemble of pre-generated conformations or the identified rigid domains may be docked separately. In the refinement stage, small-scale movements of the backbone and side-chains are modeled and the binding orientation is improved by rigid-body adjustments. For clarity of presentation, we divide the different methods into categories. This should allow the reader to focus on the most suitable method for a particular docking problem.
引用
收藏
页码:271 / 289
页数:19
相关论文
共 160 条
  • [11] Bastard K, 2003, J COMPUT CHEM, V24, P1910, DOI [10.1002/jcc.10329, 10.1002/JCC.10329]
  • [12] Docking to single-domain and multiple-domain proteins: Old and new challenges
    Ben-Zeev, E
    Kowalsman, N
    Ben-Shimon, A
    Segal, D
    Atarot, T
    Noivirt, O
    Shay, T
    Eisenstein, M
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 60 (02) : 195 - 201
  • [13] An analysis of conformational changes on protein-protein association: implications for predictive docking
    Betts, MJ
    Sternberg, MJE
    [J]. PROTEIN ENGINEERING, 1999, 12 (04): : 271 - 283
  • [14] Flexible protein-protein docking
    Bonvin, AM
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2006, 16 (02) : 194 - 200
  • [15] AUTOMATIC-ANALYSIS OF PROTEIN CONFORMATIONAL-CHANGES BY MULTIPLE LINKAGE CLUSTERING
    BOUTONNET, NS
    ROOMAN, MJ
    WODAK, SJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1995, 253 (04) : 633 - 647
  • [16] CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS
    BROOKS, BR
    BRUCCOLERI, RE
    OLAFSON, BD
    STATES, DJ
    SWAMINATHAN, S
    KARPLUS, M
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) : 187 - 217
  • [17] Broyden C.G., 1970, J I MATH ITS APPL, V6, P76, DOI DOI 10.1093/IMAMAT/6.1.76
  • [18] New applications of simulated annealing in X-ray crystallography and solution NMR
    Brunger, AT
    Adams, PD
    Rice, LM
    [J]. STRUCTURE, 1997, 5 (03) : 325 - 336
  • [19] Successful discrimination of protein interactions
    Camacho, CJ
    Gatchell, DW
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2003, 52 (01): : 92 - 97
  • [20] Protein docking along smooth association pathways
    Camacho, CJ
    Vajda, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (19) : 10636 - 10641