Survival of neural precursor cells in growth factor-poor environment: Implications for transplantation in chronic disease

被引:51
作者
Einstein, O [1 ]
Ben-Menachem-Tzidon, O [1 ]
Mizrachi-Kol, R [1 ]
Reinhartz, E [1 ]
Grigoriadis, N [1 ]
Ben-Hur, T [1 ]
机构
[1] Hebrew Univ Jerusalem, Hadassah Med Ctr, Dept Neurol, Agnes Ginges Ctr Human Neurogenet, IL-91120 Jerusalem, Israel
关键词
NPCs; transplantation in chronic disease; EAE; MS; long-term survival;
D O I
10.1002/glia.20305
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A key issue for therapeutic neural stem cell transplantation in chronic diseases is the long-term survival of transplanted cells in the brain. The normal adult central nervous system does not support the survival of transplanted cells. Presumably, the limited availability of trophic factors maintains the survival of resident cells but is insufficient for supporting the survival of transplanted cells. Specifically, in multiple sclerosis, a chronic relapsing disease, it would be necessary to maintain long-term survival of transplanted cells through phases of relapses and remissions. It may be beneficial to transplant cells as early as possible, in a form that will keep their survival independent of tissue support and ready for immediate mobilization upon tissue demand during disease relapse. In the present study, we examined whether, in the form of neurospheres, multipotential neural precursor cells (NPCs) survive in a growth factor-poor environment while maintaining their potential to respond to environmental cues. We found that after removal of growth factors from the culture medium of neurospheres in vitro, NPC proliferation decreased significantly, but most cells survived for a prolonged time and maintained their stem cell characteristics. After re-exposure to growth factors, neurosphere cells resumed proliferation and could differentiate along neural lineages. Furthermore, neurospheres, but not single NPCs, that were transplanted into the brain ventricles of intact animals survived within the ventricles for at least a month and responded to induction of experimental autoimmune encephalomyelitis and brain inflammation by extensive migration into the brain white matter and differentiated into glial lineage cells. (c) 2005 Wiley-Liss, Inc.
引用
收藏
页码:449 / 455
页数:7
相关论文
共 39 条
[1]   Insulin-like growth factor-1 is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2 [J].
Arsenijevic, Y ;
Weiss, S ;
Schneider, B ;
Aebischer, P .
JOURNAL OF NEUROSCIENCE, 2001, 21 (18) :7194-7202
[2]   CELL-DEATH AND CONTROL OF CELL-SURVIVAL IN THE OLIGODENDROCYTE LINEAGE [J].
BARRES, BA ;
HART, IK ;
COLES, HSR ;
BURNE, JF ;
VOYYODIC, JT ;
RICHARDSON, WD ;
RAFF, MC .
CELL, 1992, 70 (01) :31-46
[3]  
BARRES BA, 1993, DEVELOPMENT, V118, P283
[4]   Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells [J].
Ben-Hur, T ;
Ben-Menachem, O ;
Furer, V ;
Einstein, O ;
Mizrachi-Kol, R ;
Grigoriadis, N .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2003, 24 (03) :623-631
[5]   Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis [J].
Ben-Hur, T ;
Einstein, O ;
Mizrachi-Kol, R ;
Ben-Menachem, O ;
Reinhartz, E ;
Karussis, D ;
Abramsky, O .
GLIA, 2003, 41 (01) :73-80
[6]   Growth and fate of PSA-NCAM+ precursors of the postnatal brain [J].
Ben-Hur, T ;
Rogister, B ;
Murray, K ;
Rougon, G ;
Dubois-Dalcq, M .
JOURNAL OF NEUROSCIENCE, 1998, 18 (15) :5777-5788
[7]   Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain [J].
Brazel, CY ;
Limke, TL ;
Osborne, JK ;
Miura, T ;
Cai, JL ;
Pevny, L ;
Rao, MS .
AGING CELL, 2005, 4 (04) :197-207
[8]   Host-guided migration allows targeted introduction of neurons into the embryonic brain [J].
Brustle, O ;
Maskos, U ;
McKay, RDG .
NEURON, 1995, 15 (06) :1275-1285
[9]   MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain [J].
Bulte, JWM ;
Ben-Hur, T ;
Miller, BR ;
Mizrachi-Kol, R ;
Einstein, O ;
Reinhartz, E ;
Zywicke, HA ;
Douglas, T ;
Frank, JA .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (01) :201-205
[10]   Oligodendrocyte population dynamics and the role of PDGF in vivo [J].
Calver, AR ;
Hall, AC ;
Yu, WP ;
Walsh, FS ;
Heath, JK ;
Betsholtz, C ;
Richardson, WD .
NEURON, 1998, 20 (05) :869-882