Anisotropic mesh refinement for finite element methods based on error reduction

被引:9
作者
Aguilar, JC [1 ]
Goodman, JB
机构
[1] Inst Tecnol Autonomo Mexico, Dept Matemat, Mexico City 01000, DF, Mexico
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
finite elements; adaptive mesh refinement; anisotropic refinement; triangular grids; error estimators;
D O I
10.1016/j.cam.2005.05.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an anisotropic adaptive refinement algorithm based on the finite element methods for the numerical solution of partial differential equations. In 2-D, for a given triangular grid and finite element approximating space V, we obtain information on location and direction of refinement by estimating the reduction of the error if a single degree of freedom is added to V. For our model problem the algorithm fits highly stretched triangles along an interior layer, reducing the number of degrees of freedom that a standard h-type isotropic refinement algorithm would use. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:497 / 515
页数:19
相关论文
共 43 条
[1]   An efficient interpolation algorithm on anisotropic grids for functions with jump discontinuities in 2-D [J].
Aguilar, JC ;
Goodman, JB .
APPLIED NUMERICAL MATHEMATICS, 2005, 55 (02) :137-153
[2]   Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part II. Structured grids [J].
Ait-Ali-Yahia, D ;
Baruzzi, G ;
Habashi, WG ;
Fortin, M ;
Dompierre, J ;
Vallet, MG .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 39 (08) :657-673
[3]  
[Anonymous], THESIS TU CHEMNITZ
[4]   ANISOTROPIC INTERPOLATION WITH APPLICATIONS TO THE FINITE-ELEMENT METHOD [J].
APEL, T ;
DOBROWOLSKI, M .
COMPUTING, 1992, 47 (3-4) :277-293
[5]   Anisotropic mesh refinement in stabilized Galerkin methods [J].
Apel, T ;
Lube, G .
NUMERISCHE MATHEMATIK, 1996, 74 (03) :261-282
[6]  
Apel T, 1998, MATH METHOD APPL SCI, V21, P519, DOI 10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.3.CO
[7]  
2-I
[8]  
APEL T, 1997, SFB393976 TU CHEMN Z
[9]  
APEL T, 1999, CROUZEIX RAVIART TYP
[10]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226