Anisotropic mesh refinement for finite element methods based on error reduction

被引:9
作者
Aguilar, JC [1 ]
Goodman, JB
机构
[1] Inst Tecnol Autonomo Mexico, Dept Matemat, Mexico City 01000, DF, Mexico
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
finite elements; adaptive mesh refinement; anisotropic refinement; triangular grids; error estimators;
D O I
10.1016/j.cam.2005.05.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an anisotropic adaptive refinement algorithm based on the finite element methods for the numerical solution of partial differential equations. In 2-D, for a given triangular grid and finite element approximating space V, we obtain information on location and direction of refinement by estimating the reduction of the error if a single degree of freedom is added to V. For our model problem the algorithm fits highly stretched triangles along an interior layer, reducing the number of degrees of freedom that a standard h-type isotropic refinement algorithm would use. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:497 / 515
页数:19
相关论文
共 43 条
[11]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[12]  
Bangerth W., 2003, LECT MATH
[13]  
BANK RE, 1990, PLTMG SOFTWARE PACKA
[14]   AN ADAPTIVE-GRID WITH DIRECTIONAL CONTROL [J].
BRACKBILL, JU .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (01) :38-50
[15]  
Brenner S. C., 2007, Texts Appl. Math., V15
[16]  
Buscaglia GC, 1997, INT J NUMER METH ENG, V40, P4119, DOI 10.1002/(SICI)1097-0207(19971130)40:22<4119::AID-NME254>3.0.CO
[17]  
2-R
[18]  
CRAIG AW, 1983, ADAPTIVE COMPUTATION, P33
[19]   A posteriori error estimation for the Stokes problem:: Anisotropic and isotropic discretizations [J].
Creusé, E ;
Nicaise, S .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (09) :1297-1341
[20]   OPTIMAL TRIANGULAR MESH GENERATION BY COORDINATE TRANSFORMATION [J].
DAZEVEDO, EF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (04) :755-786