Biomass-Derived Sponge-like Carbonaceous Hydrogels and Aerogels for Supercapacitors

被引:554
作者
Wu, Xi-Lin [1 ,2 ]
Wen, Tao [2 ]
Guo, Hong-Li [1 ]
Yang, Shubin [2 ]
Wang, Xiangke [2 ]
Xu, An-Wu [1 ]
机构
[1] Univ Sci & Technol China, Div Nanomat & Chem, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Key Lab Novel Thin Film Solar Cells, Hefei 230031, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon materials; hydrogel; aerogel; mechanical properties; supercapacitors; SUPERIOR PERFORMANCE; GRAPHENE; NANOTUBES; CARBONS; NANOFIBERS; CHEMISTRY; SPHERES; ENERGY; OXIDE;
D O I
10.1021/nn400566d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a newly developed material, carbon gels have been receiving considerable attention due to their multifunctional properties. Herein, we present a facile, green, and template-free route toward sponge-like carbonaceous hydrogels and aerogels by using crude biomass, watermelon as the carbon source. The obtained three-dimensional (3D) flexible carbonaceous gels are made of both carbonaceous nanofibers and nanospheres. The porous carbonaceous gels (CGs) are highly chemically active and show excellent mechanical flexibility which enable them to be a good scaffold for the synthesis of 3D composite materials. We synthesized the carbonaceous gel-based composite materials by incorporating Fe3O4 nanoparticles into the networks of the carbonaceous gels. The Fe3O4/CGs composites further transform into magnetite carbon aerogels (MCAs) by calcination. The MCAs keep the porous structure of the original CGs, which allows the sustained and stable transport of both electrolyte ions and electrons to the electrode surface, leading to excellent electrochemical performance. The MCAs exhibit an excellent capacitance of 333.1 F.g(-1) a current density of 1 A.g(-1) within a potential window of -1.0 to 0 V in 6 M KOH solution. Meanwhile, the MCAs also show outstanding cycling stability with 96% of the capacitance retention after 1000 cycles of charge/discharge. These findings open up the use of low-cost elastic carbon gels for the synthesis of other 3D composite materials and show the possibility for the application in energy storage.
引用
收藏
页码:3589 / 3597
页数:9
相关论文
共 44 条
[1]   Graphene Hydrogels Deposited in Nickel Foams for High-Rate Electrochemical Capacitors [J].
Chen, Ji ;
Sheng, Kaixuan ;
Luo, Peihui ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2012, 24 (33) :4569-4573
[2]   Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors [J].
Chen, Li-Feng ;
Zhang, Xu-Dong ;
Liang, Hai-Wei ;
Kong, Mingguang ;
Guan, Qing-Fang ;
Chen, Ping ;
Wu, Zhen-Yu ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (08) :7092-7102
[3]   Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel [J].
Chen, Wufeng ;
Li, Sirong ;
Chen, Chunhua ;
Yan, Lifeng .
ADVANCED MATERIALS, 2011, 23 (47) :5679-+
[4]   DNA-SWNT hybrid hydrogel [J].
Cheng, Enjun ;
Li, Yulin ;
Yang, Zhongqiang ;
Deng, Zhaoxiang ;
Liu, Dongsheng .
CHEMICAL COMMUNICATIONS, 2011, 47 (19) :5545-5547
[5]   Ultrahigh Specific Capacitances for Supercapacitors Achieved by Nickel Cobaltite/Carbon Aerogel Composites [J].
Chien, Hsing-Chi ;
Cheng, Wei-Yun ;
Wang, Yong-Hui ;
Lu, Shih-Yuan .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (23) :5038-5043
[6]   3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities [J].
Choi, Bong Gill ;
Yang, MinHo ;
Hong, Won Hi ;
Choi, Jang Wook ;
Huh, Yun Suk .
ACS NANO, 2012, 6 (05) :4020-4028
[7]   Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (03) :2693-2703
[8]   Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials [J].
Emmenegger, C ;
Mauron, P ;
Sudan, P ;
Wenger, P ;
Hermann, V ;
Gallay, R ;
Züttel, A .
JOURNAL OF POWER SOURCES, 2003, 124 (01) :321-329
[9]   Borax-Mediated Formation of Carbon Aerogels from Glucose [J].
Fellinger, Tim-Patrick ;
White, Robin J. ;
Titirici, Maria-Magdalena ;
Antonietti, Markus .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (15) :3254-3260
[10]   Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes [J].
Fukushima, T ;
Kosaka, A ;
Ishimura, Y ;
Yamamoto, T ;
Takigawa, T ;
Ishii, N ;
Aida, T .
SCIENCE, 2003, 300 (5628) :2072-2074