Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond

被引:233
作者
Felton, S. [1 ]
Edmonds, A. M. [1 ]
Newton, M. E. [1 ]
Martineau, P. M. [2 ]
Fisher, D. [2 ]
Twitchen, D. J. [3 ]
Baker, J. M. [4 ]
机构
[1] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[2] DTC Res Ctr, Maidenhead SL6 6JW, Berks, England
[3] Element Six Ltd, Ascot SL5 8BP, Berks, England
[4] Clarendon Lab, Oxford OX1 3PU, England
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 07期
基金
英国工程与自然科学研究理事会;
关键词
colour centres; diamond; ground states; hyperfine interactions; light polarisation; paramagnetic resonance; vacancies (crystal); N-V CENTERS; PARAMAGNETIC-RESONANCE; SPIN POLARIZATION; DEFECTS; EPR;
D O I
10.1103/PhysRevB.79.075203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The (14)N, (15)N, and (13)C hyperfine interactions in the ground state of the negatively charged nitrogen vacancy (NV(-)) center have been investigated using electron-paramagnetic-resonance spectroscopy. The previously published parameters for the (14)N hyperfine interaction do not produce a satisfactory fit to the experimental NV(-) electron-paramagnetic-resonance data. The small anisotropic component of the NV(-) hyperfine interaction can be explained from dipolar interaction between the nitrogen nucleus and the unpaired-electron probability density localized on the three carbon atoms neighboring the vacancy. Optical spin polarization of the NV(-) ground state was used to enhance the electron-paramagnetic-resonance sensitivity enabling detailed study of the hyperfine interaction with (13)C neighbors. The data confirmed the identification of three equivalent carbon nearest neighbors but indicated the next largest (13)C interaction is with six, rather than as previously assumed three, equivalent neighboring carbon atoms.
引用
收藏
页数:8
相关论文
共 30 条
[1]   Room temperature stable single-photon source [J].
Beveratos, A ;
Kühn, S ;
Brouri, R ;
Gacoin, T ;
Poizat, JP ;
Grangier, P .
EUROPEAN PHYSICAL JOURNAL D, 2002, 18 (02) :191-196
[2]   Combined optical and microwave approach for performing quantum spin operations on the nitrogen-vacancy center in diamond [J].
Charnock, FT ;
Kennedy, TA .
PHYSICAL REVIEW B, 2001, 64 (04)
[3]   Colour changes produced in natural brown diamonds by high-pressure, high-temperature treatment [J].
Collins, AT ;
Kanda, H ;
Kitawaki, H .
DIAMOND AND RELATED MATERIALS, 2000, 9 (02) :113-122
[4]   COLOUR CENTRES IN IRRADIATED DIAMONDS .1. [J].
COULSON, CA ;
KEARSLEY, MJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 241 (1227) :433-454
[5]   OPTICAL STUDIES OF 1.945 EV VIBRONIC BAND IN DIAMOND [J].
DAVIES, G ;
HAMER, MF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1976, 348 (1653) :285-298
[6]   VACANCY-RELATED CENTERS IN DIAMOND [J].
DAVIES, G ;
LAWSON, SC ;
COLLINS, AT ;
MAINWOOD, A ;
SHARP, SJ .
PHYSICAL REVIEW B, 1992, 46 (20) :13157-13170
[7]   Electron paramagnetic resonance studies of the neutral nitrogen vacancy in diamond [J].
Felton, S. ;
Edmonds, A. M. ;
Newton, M. E. ;
Martineau, P. M. ;
Fisher, D. ;
Twitchen, D. J. .
PHYSICAL REVIEW B, 2008, 77 (08)
[8]   Ab initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors [J].
Gali, Adam ;
Fyta, Maria ;
Kaxiras, Efthimios .
PHYSICAL REVIEW B, 2008, 77 (15)
[9]  
Gerloch M., 1986, ORBITALS TERMS STATE
[10]   The twelve-line 1.682eV luminescence center in diamond and the vacancy-silicon complex [J].
Goss, JP ;
Jones, R ;
Breuer, SJ ;
Briddon, PR ;
Oberg, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (14) :3041-3044