Failure of transplanted bone marrow cells to adopt a pancreatic β-cell fate

被引:84
作者
Taneera, J
Rosengren, A
Renstrom, E
Nygren, JM
Serup, P
Rorsman, P
Jacobsen, SEW
机构
[1] Lund Univ, Lund Strateg Res Ctr Stem Cell Biol & Cell Therap, Hematopoiet Stem Cell Lab, BMC, SE-22184 Lund, Sweden
[2] Lund Univ, Dept Physiol Sci, Lund, Sweden
[3] Hagedorn Res Inst, Dept Dev Biol, Copenhagen, Denmark
[4] Novo Nordisk AS, DK-2880 Bagsvaerd, Denmark
关键词
D O I
10.2337/diabetes.55.02.06.db05-1212
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recent studies in normal mice have suggested that transplanted bone marrow cells can transdifferentiate into pancreatic beta-cells at relatively high efficiency. Herein, adopting the same and alternative approaches to deliver and fate map-transplanted bone marrow cells in the pancreas of normal as well as diabetic mice, we further investigated the potential of bone marrow transplantation as an alternative approach for beta-cell replacement. In contrast to previous studies, transplanted bone marrow cells expressing green fluorescence protein (GFP) under the control of the mouse insulin promoter failed to express GFP in the pancreas of normal as well as diabetic mice. Although bone marrow cells expressing GFP under the ubiquitously expressed beta-actin promoter efficiently engrafted the pancreas of normal and hyperglycemic mice, virtually all expressed CD45 and Mac-1/Gr-1, demonstrating that they adopt a hematopoietic rather than beta-cell fate, a finding further substantiated by the complete absence of GFP(+) cells expressing insulin and the beta-cell transcription factors pancreatic duodenal homeobox factor-1 and homeodomain protein. Thus, transplanted bone marrow cells demonstrated little, if any, capacity to adopt a beta-cell fate.
引用
收藏
页码:290 / 296
页数:7
相关论文
共 49 条
[1]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[2]   Can stem cells cross lineage boundaries? [J].
Anderson, DJ ;
Gage, FH ;
Weissman, IL .
NATURE MEDICINE, 2001, 7 (04) :393-395
[3]   Reversal of experimental diabetes by multiple bone marrow transplantation [J].
Banerjee, M ;
Kumar, A ;
Bhonde, RR .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 328 (01) :318-325
[4]   Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo [J].
Bjornson, CRR ;
Rietze, RL ;
Reynolds, BA ;
Magli, MC ;
Vescovi, AL .
SCIENCE, 1999, 283 (5401) :534-537
[5]   Stem cells and pancreatic differentiation in vitro [J].
Blyszczuk, P ;
Wobus, AM .
JOURNAL OF BIOTECHNOLOGY, 2004, 113 (1-3) :3-13
[6]   From marrow to brain: Expression of neuronal phenotypes in adult mice [J].
Brazelton, TR ;
Rossi, FMV ;
Keshet, GI ;
Blau, HM .
SCIENCE, 2000, 290 (5497) :1775-1779
[7]   Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates [J].
Camargo, FD ;
Green, R ;
Capetenaki, Y ;
Jackson, KA ;
Goodell, MA .
NATURE MEDICINE, 2003, 9 (12) :1520-1527
[8]   Failure of bone marrow cells to transdifferentiate into neural cells in vivo [J].
Castro, RF ;
Jackson, KA ;
Goodell, MA ;
Robertson, CS ;
Liu, H ;
Shine, HD .
SCIENCE, 2002, 297 (5585) :1299-1299
[9]   Stem cells: Lost in translation [J].
Chien, KR .
NATURE, 2004, 428 (6983) :607-608
[10]   Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells [J].
Choi, JB ;
Uchino, H ;
Azuma, K ;
Iwashita, N ;
Tanaka, Y ;
Mochizuki, H ;
Migita, M ;
Shimada, T ;
Kawamori, R ;
Watada, H .
DIABETOLOGIA, 2003, 46 (10) :1366-1374