Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI

被引:102
作者
Dukart, Juergen [1 ,2 ,5 ]
Mueller, Karsten [1 ]
Barthel, Henryk [2 ,3 ]
Villringer, Arno [1 ,2 ,4 ]
Sabri, Osama [2 ,3 ]
Schroeter, Matthias Leopold [1 ,2 ,4 ]
机构
[1] Max Planck Inst Human Cognit & Brain Sci, D-04103 Leipzig, Germany
[2] Univ Leipzig, LIFE Leipzig Res Ctr Civilizat Dis, D-04103 Leipzig, Germany
[3] Univ Leipzig, Dept Nucl Med, D-04103 Leipzig, Germany
[4] Univ Leipzig, Day Clin Cognit Neurol, D-04103 Leipzig, Germany
[5] Univ Lausanne, CHUV, LREN, Dept Neurosci Clin, Lausanne, Switzerland
基金
美国国家卫生研究院;
关键词
Multimodal imaging; Support vector machine classification; Multicenter validation; ADNI; FRONTOTEMPORAL LOBAR DEGENERATION; MILD COGNITIVE IMPAIRMENT; FEATURE-SELECTION; DEMENTIA; DIAGNOSIS; HYPOMETABOLISM; PATTERNS; AD;
D O I
10.1016/j.pscychresns.2012.04.007
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The application of support vector machine classification (SVM) to combined information from magnetic resonance imaging (MRI) and [F18]fluorodeoxyglucose positron emission tomography (FDG-PET) has been shown to improve detection and differentiation of Alzheimer's disease dementia (AD) and frontotemporal lobar degeneration. To validate this approach for the most frequent dementia syndrome AD, and to test its applicability to multicenter data, we randomly extracted FDG-PET and MRI data of 28 AD patients and 28 healthy control subjects from the database provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI) and compared them to data of 21 patients with AD and 13 control subjects from our own Leipzig cohort. SVM classification using combined volume-of-interest information from FDG-PET and MRI based on comprehensive quantitative meta-analyses investigating dementia syndromes revealed a higher discrimination accuracy in comparison to single modality classification. For the ADNI dataset accuracy rates of up to 88% and for the Leipzig cohort of up to 100% were obtained. Classifiers trained on the ADNI data discriminated the Leipzig cohorts with an accuracy of 91%. In conclusion, our results suggest SVM classification based on quantitative meta-analyses of multicenter data as a valid method for individual AD diagnosis. Furthermore, combining imaging information from MRI and FDG-PET might substantially improve the accuracy of AD diagnosis. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:230 / 236
页数:7
相关论文
共 37 条
[1]   Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier [J].
Abdulkadir, Ahmed ;
Mortamet, Benedicte ;
Vemuri, Prashanthi ;
Jack, Clifford R., Jr. ;
Krueger, Gunnar ;
Kloeppel, Stefan .
NEUROIMAGE, 2011, 58 (03) :785-792
[2]   A fast diffeomorphic image registration algorithm [J].
Ashburner, John .
NEUROIMAGE, 2007, 38 (01) :95-113
[3]   Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study [J].
Barthel, Henryk ;
Gertz, Hermann-Josef ;
Dresel, Stefan ;
Peters, Oliver ;
Bartenstein, Peter ;
Buerger, Katharina ;
Hiemeyer, Florian ;
Wittemer-Rump, Sabine M. ;
Seibyl, John ;
Reininger, Cornelia ;
Sabri, Osama .
LANCET NEUROLOGY, 2011, 10 (05) :424-435
[4]   Molecular, structural, and functional characterization of Alzheimer's disease: Evidence for a relationship between default activity, amyloid, and memory [J].
Buckner, RL ;
Snyder, AZ ;
Shannon, BJ ;
LaRossa, G ;
Sachs, R ;
Fotenos, AF ;
Sheline, YI ;
Klunk, WE ;
Mathis, CA ;
Morris, JC ;
Mintun, MA .
JOURNAL OF NEUROSCIENCE, 2005, 25 (34) :7709-7717
[5]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[6]   SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting [J].
Chaves, R. ;
Ramirez, J. ;
Gorriz, J. M. ;
Lopez, M. ;
Salas-Gonzalez, D. ;
Alvarez, I. ;
Segovia, F. .
NEUROSCIENCE LETTERS, 2009, 461 (03) :293-297
[7]   Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI [J].
Davatzikos, C. ;
Resnick, S. M. ;
Wu, X. ;
Parmpi, P. ;
Clark, C. M. .
NEUROIMAGE, 2008, 41 (04) :1220-1227
[8]   Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia.: A PET study [J].
Diehl, J ;
Grimmer, T ;
Drzezga, A ;
Riemenschneider, M ;
Förstl, H ;
Kurz, A .
NEUROBIOLOGY OF AGING, 2004, 25 (08) :1051-1056
[9]   Decline of cerebral glucose metabolism in frontotemporal dementia:: a longitudinal 18F-FDG-PET-study [J].
Diehl-Schmid, J. ;
Grimmer, T. ;
Drzezga, A. ;
Bornschein, S. ;
Riemenschneider, M. ;
Foerstl, H. ;
Schwaiger, M. ;
Kurz, A. .
NEUROBIOLOGY OF AGING, 2007, 28 (01) :42-50
[10]   Research criteria for the diagnosis of Alzheimer"s disease: revising the NINCDS-ADRDA criteria [J].
Dubois, Bruno ;
Feldman, Howard H. ;
Jacova, Claudia ;
Dekosky, Steven T. ;
Barberger-Gateau, Pascale ;
Cummings, Jeffrey ;
Delocourte, Andre ;
Galasko, Douglas ;
Gauthier, Serge ;
Jicha, Gregory ;
Meguro, Kenichi ;
O'Brien, John ;
Pasquier, Florence ;
Robert, Philippe ;
Rossor, Martin ;
Solloway, Steven ;
Stern, Yaakov ;
Visser, Pieter J. ;
Scheltens, Philip .
LANCET NEUROLOGY, 2007, 6 (08) :734-746