SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting

被引:112
作者
Chaves, R. [1 ]
Ramirez, J. [1 ]
Gorriz, J. M. [1 ]
Lopez, M. [1 ]
Salas-Gonzalez, D. [1 ]
Alvarez, I. [1 ]
Segovia, F. [1 ]
机构
[1] Univ Granada, Dept Signal Theory Networking & Commun, E-18071 Granada, Spain
关键词
SPECT Brain Imaging Classification; Computer-aided diagnosis; Alzheimer's disease; Support Vector machine; SPECT; CLASSIFICATION;
D O I
10.1016/j.neulet.2009.06.052
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This letter shows a computer-aided diagnosis (CAD) technique for the early detection of the Alzheimer's disease (AD) based on single photon emission computed tomography (SPECT) image feature selection and a statistical learning theory classifier. The challenge of the curse of dimensionality is addressed by reducing the large dimensionality of the input data and defining normalized mean squared error features over regions of interest (ROI) that are selected by a t-test feature selection with feature correlation weighting. Thus, normalized mean square error (NMSE) features of cubic blocks located in the temporoparietal brain region yields peak accuracy values of 98.3% for almost linear kernel support vector machine (SVM) defined over the 20 most discriminative features extracted. This new method outperformed recent developed methods for early AD diagnosis. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:293 / 297
页数:5
相关论文
共 17 条
[1]   Alzheimer's diagnosis using eigenbrains and support vector machines [J].
Alvarez, I. ;
Gorriz, J. M. ;
Ramirez, J. ;
Salas-Gonzalez, D. ;
Lopez, M. ;
Puntonet, C. G. ;
Segovia, F. .
ELECTRONICS LETTERS, 2009, 45 (07) :342-342
[2]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[3]  
DUIN RPW, 2000, INT C PATT REC ICPR, V2, P4392
[4]   Improvements on cross-validation: The .632+ bootstrap method [J].
Efron, B ;
Tibshirani, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) :548-560
[5]  
Friston K, 2007, STATISTICAL PARAMETRIC MAPPING: THE ANALYSIS OF FUNCTIONAL BRAIN IMAGES, P1
[6]   Automatic selection of ROIs in functional imaging using Gaussian mixture models [J].
Gorriz, J. M. ;
Lassl, A. ;
Ramirez, J. ;
Salas-Gonzalez, D. ;
Puntonet, C. G. ;
Lang, E. W. .
NEUROSCIENCE LETTERS, 2009, 460 (02) :108-111
[7]   A comparison of classification methods for differentiating fronto-temporal dementia from Alzheimer's disease using FDG-PET imaging [J].
Higdon, R ;
Foster, NL ;
Koeppe, RA ;
DeCarli, CS ;
Jagust, WJ ;
Clark, CM ;
Barbas, NR ;
Arnold, SE ;
Turner, RS ;
Heidebrink, JL ;
Minoshima, S .
STATISTICS IN MEDICINE, 2004, 23 (02) :315-326
[8]  
Kogure D, 2000, J NUCL MED, V41, P1155
[9]   Automatic tool for Alzheimer's disease diagnosis using PCA and Bayesian classification rules [J].
Lopez, M. ;
Ramirez, J. ;
Gorriz, J. M. ;
Salas-Gonzalez, D. ;
Alvarez, I. ;
Segovia, F. ;
Puntonet, C. G. .
ELECTRONICS LETTERS, 2009, 45 (08) :389-390
[10]   Computer-aided diagnosis of Alzheimer's type dementia combining support vector machines and discriminant set of features [J].
Ramirez, J. ;
Gorriz, J. M. ;
Salas-Gonzalez, D. ;
Romero, A. ;
Lopez, M. ;
Alvarez, I. ;
Gomez-Rio, M. .
INFORMATION SCIENCES, 2013, 237 :59-72