Alzheimer's diagnosis using eigenbrains and support vector machines

被引:39
作者
Alvarez, I. [1 ]
Gorriz, J. M. [1 ]
Ramirez, J. [1 ]
Salas-Gonzalez, D. [1 ]
Lopez, M. [1 ]
Puntonet, C. G. [2 ]
Segovia, F. [1 ]
机构
[1] Univ Granada, Dept Teoria Senal Telemat & Comunicac, E-18071 Granada, Spain
[2] Univ Granada, Dept Arquitectura Tecnol & Comp, E-18071 Granada, Spain
关键词
IMAGES;
D O I
10.1049/el.2009.3415
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An accurate and early diagnosis of the Alzheimer's disease (AD) is of fundamental importance for the patient's medical treatment. Single photon emission computed tomography (SPECT) images are commonly used by physicians to assist the diagnosis. Presented is a computer-assisted diagnosis tool based in a principal component analysis (PCA) dimensional reduction of the feature space approach and a support vector machine (SVM) classification method for improving the AD diagnosis accuracy by means of SPECT images. The most relevant image features were selected under a PCA compression, which diagonalises the covariance matrix, and the extracted information was used to train an SVM classifier, which could classify new subjects in an unsupervised manner.
引用
收藏
页码:342 / 342
页数:1
相关论文
共 8 条
[1]  
Friston K, 2007, STATISTICAL PARAMETRIC MAPPING: THE ANALYSIS OF FUNCTIONAL BRAIN IMAGES, P10, DOI 10.1016/B978-012372560-8/50002-4
[2]   SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information [J].
Fung, Glenn ;
Stoeckel, Jonathan .
KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 11 (02) :243-258
[3]  
Ramírez J, 2008, LECT NOTES COMPUT SC, V5101, P741, DOI 10.1007/978-3-540-69384-0_79
[4]  
Ramirez J., 2006, ELECTRON LETT, V42, P877
[5]   Improved Gauss-Newton optimisation methods in affine registration of SPECT brain images [J].
Salas-Gonzalez, D. ;
Gorriz, J. M. ;
Ramirez, J. ;
Lass, A. ;
Puntonet, C. G. .
ELECTRONICS LETTERS, 2008, 44 (22) :1291-U8
[6]   Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval [J].
Tao, DC ;
Tang, X ;
Li, XL ;
Wu, XD .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (07) :1088-1099
[7]  
TURK M, 1991, J COGNITIVE SCI, V3, P1
[8]  
Vapnik V N, 1998, Statistical Learning Theory, V41, P3185