Automatic selection of ROIs in functional imaging using Gaussian mixture models

被引:36
作者
Gorriz, J. M. [1 ]
Lassl, A. [1 ]
Ramirez, J. [1 ]
Salas-Gonzalez, D. [1 ]
Puntonet, C. G. [2 ]
Lang, E. W. [3 ]
机构
[1] Univ Granada, Dept Teoria Se Nal Telemat & Comunicac, E-18071 Granada, Spain
[2] Univ Granada, Dept Arquitectura & Tecnol Comp, E-18071 Granada, Spain
[3] Univ Regensburg, Dept Computat Intelligence & Machine Learning, D-8400 Regensburg, Germany
关键词
SPECT brain imaging classification; Computer-aided diagnosis; Alzheimer's disease; ALZHEIMERS-DISEASE; SPECT IMAGES; CLASSIFICATION;
D O I
10.1016/j.neulet.2009.05.039
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We present an automatic method for selecting regions of interest (ROIs) of the information contained in three-dimensional functional brain images using Gaussian mixture models (GMMs), where each Gaussian incorporates a contiguous brain region with similar activation. The novelty of the approach is based on approximating the grey-level distribution of a brain image by a sum of Gaussian functions, whose parameters are determined by a maximum likelihood criterion via the expectation maximization (EM) algorithm. Each Gaussian or cluster is represented by a multivariate Gaussian function with a center coordinate and a certain shape. This approach leads to a drastic compression of the information contained in the brain image and serves as a starting point for a variety of possible feature extraction methods for the diagnosis of brain diseases. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:108 / 111
页数:4
相关论文
共 18 条
[1]   Alzheimer's diagnosis using eigenbrains and support vector machines [J].
Alvarez, I. ;
Gorriz, J. M. ;
Ramirez, J. ;
Salas-Gonzalez, D. ;
Lopez, M. ;
Puntonet, C. G. ;
Segovia, F. .
ELECTRONICS LETTERS, 2009, 45 (07) :342-342
[2]   ARTIFICIAL NEURAL NETWORKS THAT USE SINGLE-PHOTON EMISSION TOMOGRAPHY TO IDENTIFY PATIENTS WITH PROBABLE ALZHEIMERS-DISEASE [J].
DAWSON, MRW ;
DOBBS, A ;
HOOPER, HR ;
MCEWAN, AJB ;
TRISCOTT, J ;
COONEY, J .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE, 1994, 21 (12) :1303-1311
[3]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[4]  
Duin RPW, 2000, INT C PATT RECOG, P1, DOI 10.1109/ICPR.2000.906006
[5]  
English RJ, 1996, SPECT SINGLE PHOTON
[6]   How many clusters? Which clustering method? Answers via model-based cluster analysis [J].
Fraley, C ;
Raftery, AE .
COMPUTER JOURNAL, 1998, 41 (08) :578-588
[7]  
Fukunaga K., 1990, Introduction to Statistical Pattern Recognition, DOI DOI 10.5555/92131
[8]   SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information [J].
Fung, Glenn ;
Stoeckel, Jonathan .
KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 11 (02) :243-258
[9]   Brain SPET perfusion in early Alzheimer's disease: where to look? [J].
Goethals, I ;
Van de Wiele, C ;
Slosman, D ;
Dierckx, R .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2002, 29 (08) :975-978
[10]  
GORRIZ JM, 2008, P IEEE NUCL SCI S C, P4392