Automatic selection of ROIs in functional imaging using Gaussian mixture models

被引:36
作者
Gorriz, J. M. [1 ]
Lassl, A. [1 ]
Ramirez, J. [1 ]
Salas-Gonzalez, D. [1 ]
Puntonet, C. G. [2 ]
Lang, E. W. [3 ]
机构
[1] Univ Granada, Dept Teoria Se Nal Telemat & Comunicac, E-18071 Granada, Spain
[2] Univ Granada, Dept Arquitectura & Tecnol Comp, E-18071 Granada, Spain
[3] Univ Regensburg, Dept Computat Intelligence & Machine Learning, D-8400 Regensburg, Germany
关键词
SPECT brain imaging classification; Computer-aided diagnosis; Alzheimer's disease; ALZHEIMERS-DISEASE; SPECT IMAGES; CLASSIFICATION;
D O I
10.1016/j.neulet.2009.05.039
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We present an automatic method for selecting regions of interest (ROIs) of the information contained in three-dimensional functional brain images using Gaussian mixture models (GMMs), where each Gaussian incorporates a contiguous brain region with similar activation. The novelty of the approach is based on approximating the grey-level distribution of a brain image by a sum of Gaussian functions, whose parameters are determined by a maximum likelihood criterion via the expectation maximization (EM) algorithm. Each Gaussian or cluster is represented by a multivariate Gaussian function with a center coordinate and a certain shape. This approach leads to a drastic compression of the information contained in the brain image and serves as a starting point for a variety of possible feature extraction methods for the diagnosis of brain diseases. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:108 / 111
页数:4
相关论文
共 18 条
[11]   FITTING MIXTURE-MODELS TO GROUPED AND TRUNCATED DATA VIA THE EM ALGORITHM [J].
MCLACHLAN, GJ ;
JONES, PN .
BIOMETRICS, 1988, 44 (02) :571-578
[12]  
NEWMAN J, 2008, NEUROIMAGE, V29, P177
[13]   SPECT in Alzheimer's disease: features associated with bilateral parietotemporal hypoperfusion [J].
Nitrini, R ;
Buchpiguel, CA ;
Caramelli, P ;
Bahia, VS ;
Mathias, SC ;
Nascimento, CMR ;
Degenszajn, J ;
Caixeta, L .
ACTA NEUROLOGICA SCANDINAVICA, 2000, 101 (03) :172-176
[14]  
Platt JC, 1999, ADVANCES IN KERNEL METHODS, P185
[15]   SMALL SAMPLE-SIZE EFFECTS IN STATISTICAL PATTERN-RECOGNITION - RECOMMENDATIONS FOR PRACTITIONERS [J].
RAUDYS, SJ ;
JAIN, AK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (03) :252-264
[16]  
Scholkopf B., 1998, Advances in Kernel Methods: Support Vector Learning
[17]  
Stoeckel J, 2004, LECT NOTES COMPUT SC, V3217, P654
[18]  
Vapnik V.N., 1998, STAT LEARNING THEORY, V1