Ergodicity of autoregressive processes with Markov-switching and consistency of the maximum-likelihood estimator

被引:26
作者
Francq, C
Roussignol, M
机构
[1] Univ Lille 1, UFR Math, Lab Probabil & Stat, F-59655 Villeneuve Dascq, France
[2] Univ Marne Vallee, Equipe Anal & Math Appl, F-93166 Noisy Le Grand, France
关键词
non linear time series models; hidden Markov chain; switching models; maximum likelihood; consistency;
D O I
10.1080/02331889808802659
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An autoregressive model with Markov-switching assumes a sequence of random vectors to be a non linear autoregressive model given a sequence of non observed state variables which forms a Markov chain. A particular case of this model is the hidden Markov model. In this paper conditions for the existence of an ergodic stationary solution are given and consistency of the maximum likelihood estimator is proved.
引用
收藏
页码:151 / 173
页数:23
相关论文
共 13 条
[1]  
[Anonymous], 1981, Springer Series in Statistics
[2]   STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1554-&
[3]  
Bougerol P, 1985, PROGR PROBABILITY ST
[4]  
DUFLO M., 1990, Methodes Recursives Aleatoires
[5]  
Elliott R., 1995, APPL MATH
[6]   PRODUCTS OF RANDOM MATRICES [J].
FURSTENBERG, H ;
KESTEN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02) :457-469
[7]   A NEW APPROACH TO THE ECONOMIC-ANALYSIS OF NONSTATIONARY TIME-SERIES AND THE BUSINESS-CYCLE [J].
HAMILTON, JD .
ECONOMETRICA, 1989, 57 (02) :357-384
[8]  
Hamilton JD., 1994, Time series analysis
[9]   SUBADDITIVE ERGODIC THEORY [J].
KINGMAN, JFC .
ANNALS OF PROBABILITY, 1973, 1 (06) :883-899
[10]   MAXIMUM-LIKELIHOOD-ESTIMATION FOR HIDDEN MARKOV-MODELS [J].
LEROUX, BG .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 40 (01) :127-143