Human centromeric alphoid domains are periodically homogenized so that they vary substantially between homologues.: Mechanism and implications for centromere functioning

被引:30
作者
Roizès, G [1 ]
机构
[1] CNRS, Inst Human Genet, UPR 1142, F-34396 Montpellier 5, France
关键词
D O I
10.1093/nar/gkl137
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sequence analysis of alphoid repeats from human chromosomes 17, 21 and 13 reveals recurrent diagnostic variant nucleotides. Their combinations define haplotypes, with higher order repeats (HORs) containing identical or closely-related haplotypes tandemly arranged into separate domains. The haplotypes found on homologues can be totally different, while HORs remain 99.8% homogeneous both intrachromosomally and between homologues. These results support the hypothesis, never before demonstrated, that unequal crossovers between sister chromatids accumulate to produce homogenization and amplification into tandem alphoid repeats. I propose that the molecular basis of this involves the diagnostic variant nucleotides, which enable pairing between HORs with identical or closely-related haplotypes. Domains are thus periodically renewed to maintain high intrachromosomal and interhomologue homogeneity. The capacity of a domain to form an active centromere is maintained as long as neither retrotransposons nor significant numbers of mutations affect it. In the presented model, a chromosome with an altered centromere can be transiently rescued by forming a neocentromere, until a restored, fully-competent domain is amplified de novo or rehomogenized through the accumulation of unequal crossovers.
引用
收藏
页码:1912 / 1924
页数:13
相关论文
共 47 条
[1]   Alpha-satellite DNA of primates: old and new families [J].
Alexandrov, I ;
Kazakov, A ;
Tumeneva, I ;
Shepelev, V ;
Yurov, Y .
CHROMOSOMA, 2001, 110 (04) :253-266
[2]   Human centromere repositioning "in progress" [J].
Amor, DJ ;
Bentley, K ;
Ryan, J ;
Perry, J ;
Wong, L ;
Slater, H ;
Choo, KHA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6542-6547
[3]   Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays [J].
Basu, J ;
Stromberg, G ;
Compitello, G ;
Willard, HF ;
van Bokkelen, G .
NUCLEIC ACIDS RESEARCH, 2005, 33 (02) :587-596
[4]   ISOLATION AND CHARACTERIZATION OF 14 CA-REPEAT MICROSATELLITES FROM HUMAN CHROMOSOME-21 [J].
BOSCH, A ;
NUNES, V ;
PATTERSON, D ;
ESTIVILL, X .
GENOMICS, 1993, 18 (01) :151-155
[5]   THE EVOLUTIONARY DYNAMICS OF REPETITIVE DNA IN EUKARYOTES [J].
CHARLESWORTH, B ;
SNIEGOWSKI, P ;
STEPHAN, W .
NATURE, 1994, 371 (6494) :215-220
[6]   Something from nothing: The evolution and utility of satellite repeats [J].
Csink, AK ;
Henikoff, S .
TRENDS IN GENETICS, 1998, 14 (05) :200-204
[7]   REEXAMINATION OF GENE TARGETING FREQUENCY AS A FUNCTION OF THE EXTENT OF HOMOLOGY BETWEEN THE TARGETING VECTOR AND THE TARGET LOCUS [J].
DENG, CX ;
CAPECCHI, MR .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (08) :3365-3371
[8]   A compositional map of the cen-q21 region of human chromosome 21 [J].
DeSario, A ;
Roizes, G ;
Allegre, N ;
Bernardi, G .
GENE, 1997, 194 (01) :107-113
[9]   MOLECULAR DRIVE - A COHESIVE MODE OF SPECIES EVOLUTION [J].
DOVER, G .
NATURE, 1982, 299 (5879) :111-117
[10]   MOLECULAR COEVOLUTION - DNA DIVERGENCE AND THE MAINTENANCE OF FUNCTION [J].
DOVER, GA ;
FLAVELL, RB .
CELL, 1984, 38 (03) :622-623