STABILITY ANALYSIS OF SECOND-ORDER SWITCHED HOMOGENEOUS SYSTEMS

被引:42
作者
Holcman, David [1 ]
Margaliot, Michael [2 ]
机构
[1] Weizmann Inst Sci, Dept Theoret Math, IL-76100 Rehovot, Israel
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel
关键词
absolute stability; switched linear systems; robust stability; hybrid systems; hybrid control;
D O I
10.1137/S0363012901389354
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the stability of second-order switched homogeneous systems. Using the concept of generalized first integrals we explicitly characterize the "most destabilizing" switching-law and construct a Lyapunov function that yields an easily verifiable, necessary and sufficient condition for asymptotic stability. Using the duality between stability analysis and control synthesis, this also leads to a novel algorithm for designing a stabilizing switching controller.
引用
收藏
页码:1609 / 1625
页数:17
相关论文
共 20 条
[1]  
[Anonymous], 1967, STABILITY MOTION
[2]  
[Anonymous], [No title captured]
[3]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[4]   A survey of computational complexity results in systems and control [J].
Blondel, VD ;
Tsitsiklis, JN .
AUTOMATICA, 2000, 36 (09) :1249-1274
[5]   Stability of planar switched systems: The linear single input case [J].
Boscain, U .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (01) :89-112
[6]  
Boyd S., 1994, SIAM STUD APPL MATH, V15
[7]   A converse Lyapunov theorem for a class of dynamical systems which undergo switching [J].
Dayawansa, WP ;
Martin, CF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (04) :751-760
[8]  
FILIPPOV AF, 1980, AUTOMAT REM CONTR+, V41, P1078
[9]  
Goldstein H, 1980, CLASSICAL MECH
[10]  
Hubbard JH, 1995, DIFFERENTIAL EQUATIO