Energy-band alignment of II-VI/Zn3P2 heterojunctions from x-ray photoemission spectroscopy

被引:23
作者
Bosco, Jeffrey P. [1 ,2 ,3 ]
Scanlon, David O. [4 ]
Watson, Graeme W. [5 ,6 ]
Lewis, Nathan S. [1 ,2 ,3 ]
Atwater, Harry A. [1 ,2 ,3 ]
机构
[1] CALTECH, Watson Lab, Pasadena, CA 91125 USA
[2] CALTECH, Noyes Lab, Beckman Inst, Pasadena, CA 91125 USA
[3] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[4] UCL, Kathleen Lonsdale Mat Chem, Dept Chem, London WC1H 0AJ, England
[5] Trinity Coll Dublin, Sch Chem, Coll Green, Dublin 2, Ireland
[6] Trinity Coll Dublin, CRANN, Coll Green, Dublin 2, Ireland
基金
英国工程与自然科学研究理事会;
关键词
MOLECULAR-BEAM EPITAXY; PRECISE DETERMINATION; COMPOUND-SOURCE; ZN3P2; GROWTH; SEMICONDUCTORS; CONDUCTIVITY; EVAPORATION; LIMITS; EDGE;
D O I
10.1063/1.4807646
中图分类号
O59 [应用物理学];
学科分类号
摘要
The energy-band alignments for zb-ZnSe(001)/alpha-Zn3P2(001), w-CdS(0001)/alpha-Zn3P2(001), and w-ZnO(0001)/alpha-Zn3P2(001) heterojunctions have been determined using high-resolution x-ray photoelectron spectroscopy via the Kraut method. Ab initio hybrid density functional theory calculations of the valence-band density of states were used to determine the energy differences between the core level and valence-band maximum for each of the bulk materials. The ZnSe/Zn3P2 heterojunction had a small conduction-band offset, Delta E-C, of -0.03+/-0.11 eV, demonstrating a nearly ideal energy-band alignment for use in thin-film photovoltaic devices. The CdS/Zn3P2 heterojunction was also type-II but had a larger conduction-band offset of Delta E-C = -0.76+/-0.10 eV. A type-III alignment was observed for the ZnO/Zn3P2 heterojunction, with Delta E-C = -1.61+/-0.16 eV indicating the formation of a tunnel junction at the oxide-phosphide interface. The data also provide insight into the role of the II-VI/Zn3P2 band alignment in the reported performance of Zn3P2 heterojunction solar cells. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 52 条
[1]   Electronic structure of mixed-valence silver oxide AgO from hybrid density-functional theory [J].
Allen, Jeremy P. ;
Scanlon, David O. ;
Watson, Graeme W. .
PHYSICAL REVIEW B, 2010, 81 (16)
[2]   EXPERIMENTS ON GE-GAAS HETEROJUNCTIONS [J].
ANDERSON, RL .
SOLID-STATE ELECTRONICS, 1962, 5 (SEP-O) :341-&
[3]  
[Anonymous], 2007, SPRINGER HDB ELECT P
[4]  
[Anonymous], J CHEM PHYS
[5]   POLYCRYSTALLINE ZN3P2 SCHOTTKY-BARRIER SOLAR-CELLS [J].
BHUSHAN, M ;
CATALANO, A .
APPLIED PHYSICS LETTERS, 1981, 38 (01) :39-41
[6]   SCHOTTKY SOLAR-CELLS ON THIN POLYCRYSTALLINE ZN3P2 FILMS [J].
BHUSHAN, M .
APPLIED PHYSICS LETTERS, 1982, 40 (01) :51-53
[7]  
Bhushan M., 1985, Zn3P2 as an Improved Semiconductor for Photovoltaic Solar Cells
[8]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[9]   Pseudomorphic growth and strain relaxation of α-Zn3P2 on GaAs(001) by molecular beam epitaxy [J].
Bosco, Jeffrey P. ;
Kimball, Gregory M. ;
Lewis, Nathan S. ;
Atwater, Harry A. .
JOURNAL OF CRYSTAL GROWTH, 2013, 363 :205-210
[10]   Band alignment of epitaxial ZnS/Zn3P2 heterojunctions [J].
Bosco, Jeffrey P. ;
Demers, Steven B. ;
Kimball, Gregory M. ;
Lewis, Nathan S. ;
Atwater, Harry A. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (09)