Light-matter interaction in a microcavity-controlled graphene transistor

被引:368
作者
Engel, Michael [2 ,3 ]
Steiner, Mathias [1 ]
Lombardo, Antonio [4 ]
Ferrari, Andrea C. [4 ]
Loehneysen, Hilbert V. [3 ,5 ,6 ]
Avouris, Phaedon [1 ]
Krupke, Ralph [2 ,3 ,7 ]
机构
[1] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[3] DFG Ctr Funct Nanostruct CFN, D-76031 Karlsruhe, Germany
[4] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[5] Karlsruhe Inst Technol, Inst Phys, D-76021 Karlsruhe, Germany
[6] Karlsruhe Inst Technol, Inst Solid State Phys, D-76021 Karlsruhe, Germany
[7] Tech Univ Darmstadt, Dept Mat & Earth Sci, D-64287 Darmstadt, Germany
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
英国工程与自然科学研究理事会;
关键词
EMISSION; DEVICES;
D O I
10.1038/ncomms1911
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light-matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness.
引用
收藏
页数:6
相关论文
共 27 条
[1]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[2]   Electron and Optical Phonon Temperatures in Electrically Biased Graphene [J].
Berciaud, Stephane ;
Han, Melinda Y. ;
Mak, Kin Fai ;
Brus, Louis E. ;
Kim, Philip ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2010, 104 (22)
[3]  
Bjoerk G., 1995, SPONTANEOUS EMISSION
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[5]   Rayleigh imaging of graphene and graphene layers [J].
Casiraghi, C. ;
Hartschuh, A. ;
Lidorikis, E. ;
Qian, H. ;
Harutyunyan, H. ;
Gokus, T. ;
Novoselov, K. S. ;
Ferrari, A. C. .
NANO LETTERS, 2007, 7 (09) :2711-2717
[6]   Strong plasmonic enhancement of photovoltage in graphene [J].
Echtermeyer, T. J. ;
Britnell, L. ;
Jasnos, P. K. ;
Lombardo, A. ;
Gorbachev, R. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Ferrari, A. C. ;
Novoselov, K. S. .
NATURE COMMUNICATIONS, 2011, 2
[7]   Quantum theory of radiation [J].
Fermi, E .
REVIEWS OF MODERN PHYSICS, 1932, 4 (01) :0087-0132
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]  
Freitag M, 2010, NAT NANOTECHNOL, V5, P497, DOI [10.1038/NNANO.2010.90, 10.1038/nnano.2010.90]
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191